Quantum spin probe of single charge dynamics
- URL: http://arxiv.org/abs/2312.02894v1
- Date: Tue, 5 Dec 2023 17:06:05 GMT
- Title: Quantum spin probe of single charge dynamics
- Authors: Jonathan C. Marcks, Mykyta Onizhuk, Yu-Xin Wang, Yizhi Zhu, Yu Jin,
Benjamin S. Soloway, Masaya Fukami, Nazar Delegan, F. Joseph Heremans,
Aashish A. Clerk, Giulia Galli, David D. Awschalom
- Abstract summary: A method for probing optically inactive spin defects would reveal semiconductor physics at the atomic scale.
We exploit the intrinsic correlation between the charge and spin states of defect centers to measure defect charge populations and dynamics.
These spin resonance-based methods generalize to other solid state defect systems in relevant materials.
- Score: 14.738467349905894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electronic defects in semiconductors form the basis for many emerging quantum
technologies. Understanding defect spin and charge dynamics in solid state
platforms is crucial to developing these building blocks, but many defect
centers are difficult to access at the single-particle level due to the lack of
sensitive readout techniques. A method for probing optically inactive spin
defects would reveal semiconductor physics at the atomic scale and advance the
study of new quantum systems. We exploit the intrinsic correlation between the
charge and spin states of defect centers to measure defect charge populations
and dynamics through the steady-state spin population, read-out at the
single-defect level with a nearby optically active qubit. We directly measure
ionization and charge relaxation of single dark defects in diamond, effects we
do not have access to with traditional coherence-based quantum sensing. These
spin resonance-based methods generalize to other solid state defect systems in
relevant materials.
Related papers
- A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Database of semiconductor point-defect properties for applications in
quantum technologies [54.17256385566032]
We have calculated over 50,000 point defects in various semiconductors including diamond, silicon carbide, and silicon.
We characterize the relevant optical and electronic properties of these defects, including formation energies, spin characteristics, transition dipole moments, zero-phonon lines.
We find 2331 composite defects which are stable in intrinsic silicon, which are then filtered to identify many new optically bright telecom spin qubit candidates and single-photon sources.
arXiv Detail & Related papers (2023-03-28T19:51:08Z) - Midgap state requirements for optically active quantum defects [0.0]
Optically active quantum defects play an important role in quantum sensing, computing, and communication.
It is commonly assumed that only quantum defects introducing levels well within the band gap and far from the band edges are of interest for quantum technologies.
We show that optically active defects with energy levels close to the band edges can display similar properties.
arXiv Detail & Related papers (2023-02-21T16:07:04Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Qubit guidelines for solid-state spin defects [0.0]
Defects with associated electron and nuclear spins in solid-state materials have a long history relevant to quantum information science.
From simple spin resonance to long-distance remote entanglement, the complexity of working with spin defects is fast advancing.
This review aims to be as defect and material agnostic as possible, with some emphasis on optical emitters.
arXiv Detail & Related papers (2020-10-30T17:48:04Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - Parallel single-shot measurement and coherent control of solid-state
spins below the diffraction limit [0.0]
We experimentally demonstrate high-fidelity control over multiple defects with nanoscale separations using an optical frequency-domain multiplexing technique.
We also demonstrate sub-wavelength control over coherent spin rotations using an optical AC Stark shift.
The demonstrated approach may be scaled to large numbers of ions with arbitrarily small separation, and is a significant step towards realizing strongly interacting atomic defect arrays.
arXiv Detail & Related papers (2020-06-02T17:55:54Z) - Cavity quantum electrodynamic readout of a solid-state spin sensor [0.0]
Solid-state spin sensors still lack a universal, high-fidelity readout technique.
We demonstrate high-fidelity, room-temperature readout of an ensemble of nitrogen-vacancy (NV) centers via strong coupling to a dielectric microwave cavity.
Our results pave a clear path to achieve unity readout fidelity of solid-state spin sensors through increased ensemble size, reduced spin-resonance linewidth, or improved cavity quality factor.
arXiv Detail & Related papers (2020-03-02T18:57:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.