Parallel single-shot measurement and coherent control of solid-state
spins below the diffraction limit
- URL: http://arxiv.org/abs/2006.01823v1
- Date: Tue, 2 Jun 2020 17:55:54 GMT
- Title: Parallel single-shot measurement and coherent control of solid-state
spins below the diffraction limit
- Authors: Songtao Chen, Mouktik Raha, Christopher Phenicie, Salim Ourari and
Jeff Thompson
- Abstract summary: We experimentally demonstrate high-fidelity control over multiple defects with nanoscale separations using an optical frequency-domain multiplexing technique.
We also demonstrate sub-wavelength control over coherent spin rotations using an optical AC Stark shift.
The demonstrated approach may be scaled to large numbers of ions with arbitrarily small separation, and is a significant step towards realizing strongly interacting atomic defect arrays.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solid-state spin defects are a promising platform for quantum science and
technology, having realized demonstrations of a variety of key components for
quantum information processing, particularly in the area of quantum networks.
An outstanding challenge for building larger-scale quantum systems with
solid-state defects is realizing high-fidelity control over multiple defects
with nanoscale separations, which is required to realize strong spin-spin
interactions for multi-qubit logic and the creation of entangled states. In
this work, we experimentally demonstrate an optical frequency-domain
multiplexing technique, allowing high-fidelity initialization and single-shot
spin measurement of six rare earth (Er$^{3+}$) ions, within the sub-wavelength
volume of a single, silicon photonic crystal cavity. We also demonstrate
sub-wavelength control over coherent spin rotations using an optical AC Stark
shift. The demonstrated approach may be scaled to large numbers of ions with
arbitrarily small separation, and is a significant step towards realizing
strongly interacting atomic defect arrays with applications to quantum
information processing and fundamental studies of many-body dynamics.
Related papers
- A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Quantum thermalization and Floquet engineering in a spin ensemble with a clock transition [3.55103790558995]
We study an optically addressable solid-state spin system comprising a strongly interacting ensemble of millions of ytterbium-171 ions in a crystal.
Our findings indicate that an ensemble of rare-earth ions serves as a versatile testbed for many-body physics and offers valuable insights for advancing quantum technologies.
arXiv Detail & Related papers (2024-08-01T03:16:25Z) - Quantum spin probe of single charge dynamics [14.738467349905894]
A method for probing optically inactive spin defects would reveal semiconductor physics at the atomic scale.
We exploit the intrinsic correlation between the charge and spin states of defect centers to measure defect charge populations and dynamics.
These spin resonance-based methods generalize to other solid state defect systems in relevant materials.
arXiv Detail & Related papers (2023-12-05T17:06:05Z) - Systematic study of rotational decoherence with a trapped-ion planar
rotor [0.4188114563181614]
Quantum rotors promise unique advantages for quantum sensing, quantum simulation, and quantum information processing.
For future applications of quantum rotors, understanding their dynamics in the presence of ambient environments and decoherence will be critical.
We present measurements of fundamental scaling relationships for decoherence of a quantum planar rotor realized with two trapped ions.
arXiv Detail & Related papers (2023-10-20T05:52:04Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Quantum Multicritical Behavior for Coupled Optical Cavities with Driven
Laser Fields [3.811778212199368]
We propose a system that a quantized light field interacts with a two-level atomic ensemble coupled by microwave fields in optical cavities.
We find that the quantum critical points can evolve into a Lifshitz point if the Rabi frequency of the light field is periodically in time.
Remarkably, the texture of atomic pseudo-spins can be used to characterize the quantum critical behaviors of the system.
arXiv Detail & Related papers (2022-02-09T10:57:53Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.