Device-Independent Quantum Secure Direct Communication Under Non-Markovian Quantum Channels
- URL: http://arxiv.org/abs/2312.03040v2
- Date: Mon, 6 May 2024 11:14:48 GMT
- Title: Device-Independent Quantum Secure Direct Communication Under Non-Markovian Quantum Channels
- Authors: Pritam Roy, Subhankar Bera, Shashank Gupta, A. S. Majumdar,
- Abstract summary: Device-independent quantum secure direct communication (DI-QSDC) is a promising primitive in quantum cryptography.
Here, we explore the constructive effect of non-Markovian noise to improve the performance of DI-QSDC.
- Score: 1.1527549304390439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Device-independent quantum secure direct communication (DI-QSDC) is a promising primitive in quantum cryptography aimed towards addressing the problems of device imperfections and key management. However, significant effort is required to tackle practical challenges such as the distance limitation due to the decohering effects of quantum channels. Here, we explore the constructive effect of non-Markovian noise to improve the performance of DI-QSDC. Considering two different environmental dynamics modelled by the amplitude damping and the dephasing channels, we show that for both cases non-Markovianty leads to a considerable improvement over Markovian dynamics in terms of three benchmark performance criteria of the DI-QSDC task. Specifically, we find that non-Markovian noise (i) enhances the protocol security measured by Bell violation, (ii) leads to a lower quantum bit error rate, and (iii) enables larger communication distances by increasing the capacity of secret communication.
Related papers
- Controlled-Quantum secure remote sensing [0.6749750044497732]
decoherence in the quantum communication channel and during the evolution of quantum states can erode quantum sensing advantages.
We introduce a modified protocol incorporating local quantum optimal control (QOC) operations to address noise in SQS.
The protocol actively mitigates noise, enhancing the achievable quantum Fisher information (QFI) and the classical Fisher information (CFI) based on the chosen measurement strategy.
arXiv Detail & Related papers (2025-04-25T06:10:58Z) - Automatic Quantum Communication Channel with Interference Detection and Reset Mechanism [0.0]
We show that interference detection coupled with a strategic reset protocol significantly enhances the reliability of quantum teleportation under realistic noise conditions.
Our system incorporates a novel feedback mechanism that continuously monitors quantum state fidelity and triggers resets when interference is detected.
In 20 experimental trials, our approach achieved an interference detection rate of 65% and required an average of 3.4 resets per successful teleportation, resulting in a maintained fidelity of 0.92, well above classical limits.
arXiv Detail & Related papers (2024-11-14T17:53:41Z) - Optimal Quantum Purity Amplification [2.05170973574812]
Quantum purity amplification (QPA) offers a novel approach to counteract the pervasive noise that degrades quantum states.
We present the optimal QPA protocol for general quantum systems against global depolarizing noise.
Our findings suggest that QPA could improve the performance of quantum information processing tasks.
arXiv Detail & Related papers (2024-09-26T17:46:00Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Entanglement recovery in noisy binary quantum information protocols via
three-qubit quantum error correction codes [0.0]
In this paper we investigate the effects of the simple three-qubit QEC codes to restore entanglement and nonlocality in a two-qubit system.
We show that they can avoid the sudden death of entanglement and improve the performance of the addressed protocols also for larger noise amplitudes.
arXiv Detail & Related papers (2022-11-21T09:37:31Z) - Noise-Robust and Loss-Tolerant Quantum Steering with Qudits [0.0]
We introduce a noise-robust and loss-tolerant test of quantum steering designed for single detector measurements.
We experimentally demonstrate detection loophole-free quantum steering in 53 dimensions through simultaneous loss and noise conditions.
By surpassing the constraints imposed upon the device-independent distribution of entanglement, our loss-tolerant, noise-robust, and resource-efficient demonstration of quantum steering proves itself a critical ingredient for making device-independent quantum communication over long distances a reality.
arXiv Detail & Related papers (2022-02-18T16:53:28Z) - Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable
Quantum Key Distribution with High Excess Noise Tolerance [7.87972015113057]
We propose a homodyne detection protocol using the quadrature phase shift keying technique.
By limiting information leakage, our proposed protocol enhances excess noise tolerance to a high level.
Our results imply that the current protocol is able to distribute keys in nearly intercity area.
arXiv Detail & Related papers (2021-04-22T16:10:35Z) - Path-encoded high-dimensional quantum communication over a 2 km
multicore fiber [50.591267188664666]
We demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states.
A stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.
arXiv Detail & Related papers (2021-03-10T11:02:45Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.