論文の概要: Gravitational cell detection and tracking in fluorescence microscopy
data
- arxiv url: http://arxiv.org/abs/2312.03509v1
- Date: Wed, 6 Dec 2023 14:08:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-07 14:45:15.190789
- Title: Gravitational cell detection and tracking in fluorescence microscopy
data
- Title(参考訳): 蛍光顕微鏡データによる重力細胞の検出と追跡
- Authors: Nikomidisz Eftimiu, Michal Kozubek
- Abstract要約: 我々は、現代の機械学習モデルと競合し、潜在的に勝る可能性のある重力場に基づく新しいアプローチを提案する。
この方法では、検出、セグメンテーション、トラッキング要素が含まれ、その結果はCell Tracking Challengeデータセットで示される。
- 参考スコア(独自算出の注目度): 0.18828620190012021
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Automatic detection and tracking of cells in microscopy images are major
applications of computer vision technologies in both biomedical research and
clinical practice. Though machine learning methods are increasingly common in
these fields, classical algorithms still offer significant advantages for both
tasks, including better explainability, faster computation, lower hardware
requirements and more consistent performance. In this paper, we present a novel
approach based on gravitational force fields that can compete with, and
potentially outperform modern machine learning models when applied to
fluorescence microscopy images. This method includes detection, segmentation,
and tracking elements, with the results demonstrated on a Cell Tracking
Challenge dataset.
- Abstract(参考訳): 顕微鏡画像中の細胞の自動検出と追跡は、生物医学研究と臨床におけるコンピュータビジョン技術の主要な応用である。
これらの分野では機械学習の手法がますます一般的になっているが、古典的なアルゴリズムは、より優れた説明可能性、高速な計算、ハードウェア要件の低減、より一貫性のあるパフォーマンスなど、両方のタスクに重要な利点を提供している。
本稿では、蛍光顕微鏡画像に適用した場合に、現代の機械学習モデルと競合し、潜在的に優れる重力場に基づく新しいアプローチを提案する。
この方法では、検出、セグメンテーション、トラッキング要素が含まれ、その結果はCell Tracking Challengeデータセットで示される。
関連論文リスト
- Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology [2.7280901660033643]
本研究は、弱教師付き分類器と自己教師付きマスク付きオートエンコーダ(MAE)のスケーリング特性について検討する。
以上の結果から,ViTをベースとしたMAEは,様々なタスクにおいて弱い教師付き分類器よりも優れており,公的なデータベースから得られた既知の生物学的関係を思い出すと,11.5%の相対的な改善が達成されることがわかった。
我々は、異なる数のチャネルと順序の画像を推論時に入力できる新しいチャネルに依存しないMAEアーキテクチャ(CA-MAE)を開発した。
論文 参考訳(メタデータ) (2024-04-16T02:42:06Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Physics Embedded Machine Learning for Electromagnetic Data Imaging [83.27424953663986]
電磁法(EM)イメージングは、セキュリティ、バイオメディシン、地球物理学、各種産業のセンシングに広く応用されている。
機械学習(ML)技術,特に深層学習(DL)技術は,高速かつ正確な画像化の可能性を秘めている。
本稿では、学習に基づくEMイメージングに物理を取り入れる様々なスキームについて検討する。
論文 参考訳(メタデータ) (2022-07-26T02:10:15Z) - Bayesian Active Learning for Scanning Probe Microscopy: from Gaussian
Processes to Hypothesis Learning [0.0]
ベイズ能動学習の基本原理と走査型プローブ顕微鏡(SPM)への応用について述べる。
これらのフレームワークは、先行データの使用、スペクトルデータに符号化された特定の機能の発見、実験中に現れる物理法則の探索を可能にする。
論文 参考訳(メタデータ) (2022-05-30T23:01:41Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
局所化分類に基づいて訓練された単純な畳み込みネットワークは、多様な機能情報をカプセル化したタンパク質表現を学習できることを示す。
また,生物機能の異なるスケールでタンパク質表現の質を評価するためのロバストな評価戦略を提案する。
論文 参考訳(メタデータ) (2022-05-24T00:00:07Z) - Increasing a microscope's effective field of view via overlapped imaging
and machine learning [4.23935174235373]
この研究は、高効率自動検体分析のために単一のセンサー上で複数の独立した視野を重畳するマルチレンズ顕微鏡イメージングシステムを示す。
論文 参考訳(メタデータ) (2021-10-10T22:52:36Z) - Ultrafast Focus Detection for Automated Microscopy [0.0]
連続的に収集した電子顕微鏡画像に対する高速な焦点検出アルゴリズムを提案する。
本手法は, 従来のコンピュータビジョン技術に適応し, 様々な微細な組織学的特徴を検出する手法である。
アウト・オブ・フォーカス条件をほぼリアルタイムに検出するテストが実施されている。
論文 参考訳(メタデータ) (2021-08-26T22:24:41Z) - Smart mobile microscopy: towards fully-automated digitization [0.0]
本稿では,最も価値のある視覚情報の自動デジタル化を目的とした,スマートな移動顕微鏡の概念を提案する。
我々は、自動顕微鏡設定制御とオートフォーカス、インフォーカスフィルタリング、フォーカススタッキングといった古典的な技術を組み合わせることでこれを実現している。
論文 参考訳(メタデータ) (2021-05-24T09:55:29Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
本稿では,マルチモーダルグラフネットワーク(MRG-Net)の新たなオンラインアプローチを提案し,視覚情報とキネマティクス情報を動的に統合する。
本手法の有効性は, JIGSAWSデータセット上での最先端の成果で実証された。
論文 参考訳(メタデータ) (2020-11-03T11:00:10Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。