論文の概要: Efficient Inverse Design Optimization through Multi-fidelity Simulations, Machine Learning, and Search Space Reduction Strategies
- arxiv url: http://arxiv.org/abs/2312.03654v2
- Date: Mon, 3 Jun 2024 15:42:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 20:01:52.272755
- Title: Efficient Inverse Design Optimization through Multi-fidelity Simulations, Machine Learning, and Search Space Reduction Strategies
- Title(参考訳): 多要素シミュレーション、機械学習、検索空間削減手法による効率的な逆設計最適化
- Authors: Luka Grbcic, Juliane Müller, Wibe Albert de Jong,
- Abstract要約: 本稿では,限られた計算量で制約されたシナリオにおける逆設計最適化プロセスの拡張を目的とした手法を提案する。
提案手法はエアフォイル逆設計とスカラーフィールド再構成の2つの異なる工学的逆設計問題について解析する。
特に、この方法は、任意の逆設計アプリケーションに適用可能であり、代表的低忠実MLモデルと高忠実度シミュレーションの相乗効果を容易にし、様々な集団ベース最適化アルゴリズムにシームレスに適用することができる。
- 参考スコア(独自算出の注目度): 0.8646443773218541
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a methodology designed to augment the inverse design optimization process in scenarios constrained by limited compute, through the strategic synergy of multi-fidelity evaluations, machine learning models, and optimization algorithms. The proposed methodology is analyzed on two distinct engineering inverse design problems: airfoil inverse design and the scalar field reconstruction problem. It leverages a machine learning model trained with low-fidelity simulation data, in each optimization cycle, thereby proficiently predicting a target variable and discerning whether a high-fidelity simulation is necessitated, which notably conserves computational resources. Additionally, the machine learning model is strategically deployed prior to optimization to compress the design space boundaries, thereby further accelerating convergence toward the optimal solution. The methodology has been employed to enhance two optimization algorithms, namely Differential Evolution and Particle Swarm Optimization. Comparative analyses illustrate performance improvements across both algorithms. Notably, this method is adaptable across any inverse design application, facilitating a synergy between a representative low-fidelity ML model, and high-fidelity simulation, and can be seamlessly applied across any variety of population-based optimization algorithms.}
- Abstract(参考訳): 本稿では,マルチ忠実度評価,機械学習モデル,最適化アルゴリズムの戦略的相乗効果を通じて,限られた計算で制約されたシナリオにおける逆設計最適化プロセスを強化する手法を提案する。
提案手法はエアフォイル逆設計とスカラーフィールド再構成の2つの異なる工学的逆設計問題について解析する。
最適化サイクル毎に、低忠実度シミュレーションデータでトレーニングされた機械学習モデルを活用することにより、ターゲット変数を十分に予測し、高忠実度シミュレーションが必要かどうかを判断し、特に計算資源を保存する。
さらに、設計空間境界を圧縮する最適化に先立って、機械学習モデルを戦略的に配置することにより、最適解への収束をさらに加速する。
この手法は、微分進化と粒子群最適化という2つの最適化アルゴリズムを強化するために用いられている。
比較分析は両アルゴリズムのパフォーマンス改善を示す。
特に、この手法は、任意の逆設計アプリケーションに適用可能であり、代表的低忠実度MLモデルと高忠実度シミュレーションの相乗効果を容易にし、様々な集団ベース最適化アルゴリズムにシームレスに適用することができる。
※
関連論文リスト
- Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis [5.6787965501364335]
ブラックボックス最適化問題は、多くの現実世界のアプリケーションで一般的な問題である。
これらの問題はインプット・アウトプット・インタラクションを通じて内部動作へのアクセスなしに最適化する必要がある。
このような問題に対処するために2つの広く使われている勾配のない最適化手法が用いられている。
本稿では,2つの手法間のモデル不確実性の類似点と相違点を明らかにすることを目的とする。
論文 参考訳(メタデータ) (2024-03-21T13:59:19Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Diffusion Generative Inverse Design [28.04683283070957]
逆設計(英: inverse design)とは、目的関数の入力を最適化し、目的の結果を導出する問題を指す。
学習グラフニューラルネットワーク(GNN)の最近の進歩は、シミュレーション力学の正確で効率的で微分可能な推定に利用することができる。
本稿では, 分散拡散モデルを用いて, 逆設計問題の解法を効率的に行う方法を示し, より効率的な粒子サンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-05T08:32:07Z) - DADO -- Low-Cost Query Strategies for Deep Active Design Optimization [1.6298921134113031]
我々は,多目的設計最適化問題における計算コストを削減するために,自己最適化のための2つの選択戦略を提案する。
我々は流体力学の領域から大規模データセットの戦略を評価し、モデルの性能を決定するために2つの新しい評価指標を導入する。
論文 参考訳(メタデータ) (2023-07-10T13:01:27Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Data-driven evolutionary algorithm for oil reservoir well-placement and
control optimization [3.012067935276772]
一般化されたデータ駆動進化アルゴリズム(GDDE)は、適切な配置と制御最適化問題で実行されるシミュレーションの数を減らすために提案される。
確率的ニューラルネットワーク(PNN)は、情報的および有望な候補を選択するための分類器として採用されている。
論文 参考訳(メタデータ) (2022-06-07T09:07:49Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
分解に基づく多目的進化アルゴリズム(MOEA/D)は、多目的最適化問題(MOP)を解く上で、極めて有望なアプローチであると考えられている。
本稿では,よく知られたPascoletti-Serafiniスキャラライゼーション法とマルチ参照ポイントの新たな戦略により,MOEA/Dアルゴリズムの改良を提案する。
論文 参考訳(メタデータ) (2021-10-27T02:07:08Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。