論文の概要: Learning Genomic Sequence Representations using Graph Neural Networks
over De Bruijn Graphs
- arxiv url: http://arxiv.org/abs/2312.03865v1
- Date: Wed, 6 Dec 2023 19:23:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-08 17:04:47.446366
- Title: Learning Genomic Sequence Representations using Graph Neural Networks
over De Bruijn Graphs
- Title(参考訳): de bruijnグラフ上のグラフニューラルネットワークを用いたゲノム配列表現の学習
- Authors: Kacper Kapu\'sniak, Manuel Burger, Gunnar R\"atsch, Amir Joudaki
- Abstract要約: 既存の技法はしばしば複雑な構造の詳細を無視し、主に文脈情報を強調する。
コンテクスト情報と文字列情報を融合する k-mer 埋め込みを開発した。
我々の埋め込みは、編集距離近似とクローズスト文字列検索タスクの先行技術より一貫して優れています。
- 参考スコア(独自算出の注目度): 1.8024397171920885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid expansion of genomic sequence data calls for new methods to achieve
robust sequence representations. Existing techniques often neglect intricate
structural details, emphasizing mainly contextual information. To address this,
we developed k-mer embeddings that merge contextual and structural string
information by enhancing De Bruijn graphs with structural similarity
connections. Subsequently, we crafted a self-supervised method based on
Contrastive Learning that employs a heterogeneous Graph Convolutional Network
encoder and constructs positive pairs based on node similarities. Our
embeddings consistently outperform prior techniques for Edit Distance
Approximation and Closest String Retrieval tasks.
- Abstract(参考訳): ゲノム配列データの急速な拡張は、堅牢なシーケンス表現を実現するための新しい方法を要求する。
既存の技法はしばしば複雑な構造の詳細を無視し、主に文脈情報を強調する。
そこで我々は, コンテクストと構造的文字列情報を融合する k-mer 埋め込みを開発し, 構造的類似性接続を持つデブリュアングラフを拡張した。
その後,不均質なグラフ畳み込みネットワークエンコーダを用いたコントラスト学習に基づく自己教師あり手法を考案し,ノード類似性に基づく正のペアを構成する。
編集距離近似と最も近い文字列検索タスクでは,組込みが先行技術を上回る。
関連論文リスト
- Higher-Order Message Passing for Glycan Representation Learning [0.0]
グラフネットワーク(GNN)は、グラフ構造化データの処理と解析のために設計されたディープラーニングモデルである。
本研究は, グリカン構造から潜在空間表現へ特徴を引き出すために, 錯体と高次メッセージパッシングに基づく新しいモデルアーキテクチャを提案する。
これらの改良により、計算グリコ科学のさらなる進歩が促進され、生物学におけるグリカンの役割が明らかにされることを期待している。
論文 参考訳(メタデータ) (2024-09-20T12:55:43Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
本稿では,グラフ構造情報をメッセージパッシングなしで学習するグラフ構造自己コントラスト(GSSC)フレームワークを提案する。
提案するフレームワークは,構造情報を事前知識として暗黙的にのみ組み込む,MLP(Multi-Layer Perceptrons)に基づいている。
これはまず、近傍の潜在的非形式的あるいはノイズの多いエッジを取り除くために構造的スペーシングを適用し、その後、スペーシングされた近傍で構造的自己コントラストを行い、ロバストなノード表現を学ぶ。
論文 参考訳(メタデータ) (2024-09-09T12:56:02Z) - Contrastive Learning for Non-Local Graphs with Multi-Resolution
Structural Views [1.4445779250002606]
本稿では,グラフ上の拡散フィルタを統合する新しい多視点コントラスト学習手法を提案する。
複数のグラフビューを拡張として組み込むことで、異種グラフの構造的等価性を捉える。
論文 参考訳(メタデータ) (2023-08-19T17:42:02Z) - Homophily-enhanced Structure Learning for Graph Clustering [19.586401211161846]
グラフ構造学習は、欠落したリンクを追加し、スプリアス接続を取り除くことで、入力グラフの精細化を可能にする。
グラフ構造学習におけるこれまでの取り組みは、主に教師付き設定を中心に行われてきた。
グラフクラスタリングのためのtextbfhomophily-enhanced structure textbflearning という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-10T02:53:30Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
コントラスト学習は、監督の有無にかかわらず、表現を学習するための第一の方法として現れてきた。
近年の研究では、グラフ表現学習における事前学習の有用性が示されている。
本稿では,グラフの対照的な目的に対する拡張を構築する際に,候補のバンクを提供するためのグラフ変換操作を提案する。
論文 参考訳(メタデータ) (2023-02-06T16:26:29Z) - ConstGCN: Constrained Transmission-based Graph Convolutional Networks
for Document-level Relation Extraction [24.970508961370548]
グラフニューラルネットワークによる文書レベルの関係抽出は、トレーニングと推論の基本的なグラフ構築ギャップに直面している。
本稿では,知識に基づく情報伝達を行う新しいグラフ畳み込みネットワークである$textbfConstGCN$を提案する。
実験の結果,本手法はDocREデータセットに対する従来のSOTA(State-of-the-art)アプローチよりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-10-08T07:36:04Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
本稿では,グラフマッチングを向上するための信頼度の高いグラフ構造を探索するために,GLAMという共用電子グラフ学習とマッチングネットワークを提案する。
提案手法は,3つの人気ビジュアルマッチングベンチマーク (Pascal VOC, Willow Object, SPair-71k) で評価される。
すべてのベンチマークにおいて、従来の最先端のグラフマッチング手法よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2021-09-01T08:24:02Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Representation Learning of Reconstructed Graphs Using Random Walk Graph
Convolutional Network [12.008472517000651]
グラフのノード特異的なメソスコピック構造を得るためにランダムウォークを利用する新しいフレームワークであるwGCNを提案する。
高次局所構造情報を組み合わせることで、ネットワークの可能性をより効率的に探究できると信じている。
論文 参考訳(メタデータ) (2021-01-02T10:31:14Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
我々は、この厄介なキュレーションを解放するために、新しい定式化、ゼロショット学習を考える。
新たに追加された関係について,テキスト記述から意味的特徴を学習しようと試みる。
我々は,GAN(Generative Adrial Networks)を活用し,テキストと知識グラフ領域の接続を確立する。
論文 参考訳(メタデータ) (2020-01-08T01:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。