論文の概要: AI and Jobs: Has the Inflection Point Arrived? Evidence from an Online
Labor Platform
- arxiv url: http://arxiv.org/abs/2312.04180v1
- Date: Thu, 7 Dec 2023 10:06:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-08 15:31:31.720799
- Title: AI and Jobs: Has the Inflection Point Arrived? Evidence from an Online
Labor Platform
- Title(参考訳): AIとジョブ: インフレクションポイントは生まれたか?
オンライン労働プラットフォームからの証拠
- Authors: Dandan Qiao, Huaxia Rui, and Qian Xiong
- Abstract要約: 人間のタスクにおける統計AIの性能を4つの要因のレンズを用いて検討する。
我々は,それぞれの職業に摂動点が存在することを示すため,競争のシンプルな経済モデルを開発する。
実証的な証拠を提供するために、私たちはまず、AIのパフォーマンスが翻訳の占有の摂動点を超えたが、Web開発の占有のためのものではないと論じる。
- 参考スコア(独自算出の注目度): 0.13124513975412255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) refers to the ability of machines or software to
mimic or even surpass human intelligence in a given cognitive task. While
humans learn by both induction and deduction, the success of current AI is
rooted in induction, relying on its ability to detect statistical regularities
in task input -- an ability learnt from a vast amount of training data using
enormous computation resources. We examine the performance of such a
statistical AI in a human task through the lens of four factors, including task
learnability, statistical resource, computation resource, and learning
techniques, and then propose a three-phase visual framework to understand the
evolving relation between AI and jobs. Based on this conceptual framework, we
develop a simple economic model of competition to show the existence of an
inflection point for each occupation. Before AI performance crosses the
inflection point, human workers always benefit from an improvement in AI
performance, but after the inflection point, human workers become worse off
whenever such an improvement occurs. To offer empirical evidence, we first
argue that AI performance has passed the inflection point for the occupation of
translation but not for the occupation of web development. We then study how
the launch of ChatGPT, which led to significant improvement of AI performance
on many tasks, has affected workers in these two occupations on a large online
labor platform. Consistent with the inflection point conjecture, we find that
translators are negatively affected by the shock both in terms of the number of
accepted jobs and the earnings from those jobs, while web developers are
positively affected by the very same shock. Given the potentially large
disruption of AI on employment, more studies on more occupations using data
from different platforms are urgently needed.
- Abstract(参考訳): 人工知能(人工知能、AI)とは、特定の認知タスクにおいて、機械やソフトウェアが人間の知性を模倣または超える能力のこと。
人間は誘導と推論の両方で学習するが、現在のAIの成功は誘導に根ざしており、タスク入力の統計的規則性を検出する能力に依存している。
課題学習性,統計資源,計算資源,学習技術を含む4因子のレンズを用いて,人間のタスクにおけるそのような統計AIの性能を検証し,AIと仕事の関係の進化を理解するための3段階の視覚的枠組みを提案する。
この概念的枠組みに基づいて,各職業に摂動点が存在することを示すため,競争のシンプルな経済モデルを構築した。
aiのパフォーマンスが変曲点を越える前に、人間労働者は常にaiパフォーマンスの改善の恩恵を受けるが、変曲点の後、このような改善が起こると、人間労働者は悪化する。
実証的な証拠を提供するため、我々はまず、aiのパフォーマンスが翻訳の職業の転換点を越えているが、web開発の職業ではないと論じた。
そして、多くのタスクでaiのパフォーマンスが大幅に向上したchatgptのローンチが、大規模オンライン労働プラットフォームにおけるこの2つの職業の労働者に与えた影響について調査した。
インフレクションポイント予想とは対照的に、翻訳者は受理されたジョブの数とそれらのジョブからの収益の両方においてショックに負の影響を受けており、ウェブ開発者は全く同じショックに肯定的な影響を受けている。
雇用におけるAIの破壊の可能性を考えると、異なるプラットフォームのデータを使ったより多くの職業の研究が緊急に必要である。
関連論文リスト
- Mind the Gap! Choice Independence in Using Multilingual LLMs for Persuasive Co-Writing Tasks in Different Languages [51.96666324242191]
チャリティー広告作成タスクにおける新規筆記アシスタントのユーザ利用が、第2言語におけるAIの性能に影響を及ぼすかどうかを分析する。
我々は、これらのパターンが、生成したチャリティー広告の説得力に変換される程度を定量化する。
論文 参考訳(メタデータ) (2025-02-13T17:49:30Z) - LLMs are Imperfect, Then What? An Empirical Study on LLM Failures in Software Engineering [38.20696656193963]
非自明なソフトウェアエンジニアリングタスクにおいて,ChatGPTをコーディングアシスタントとして使用した22名の参加者を対象に,観察的研究を行った。
そこで我々は,ChatGPTが失敗した事例,その根本原因,およびユーザが使用する緩和ソリューションを特定した。
論文 参考訳(メタデータ) (2024-11-15T03:29:41Z) - Mitigating the Language Mismatch and Repetition Issues in LLM-based Machine Translation via Model Editing [39.375342978538654]
機械翻訳を行うためにLLM(Large Language Models)を活用することに注力する。
誤りの2つのパターンが頻繁に発生し、言語ミスマッチと繰り返しの翻訳品質に劇的な影響を与えていることを観察する。
モデル編集手法を活用することにより,これらの2つの問題を緩和する可能性について検討する。
論文 参考訳(メタデータ) (2024-10-09T16:51:21Z) - Feedback Loops With Language Models Drive In-Context Reward Hacking [78.9830398771605]
フィードバックループがコンテキスト内報酬ハッキング(ICRH)を引き起こす可能性があることを示す。
ICRHに繋がる2つのプロセス、すなわちアウトプット・リファインメントとポリシー・リファインメントを同定し研究する。
AI開発が加速するにつれて、フィードバックループの効果が増大する。
論文 参考訳(メタデータ) (2024-02-09T18:59:29Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
最近の大規模言語モデル(LLM)は、世代品質を改善するために人間のフィードバックを活用している。
LLMの出力を最適化する推論時間最適化手法であるLLMRefineを提案する。
機械翻訳、長文質問応答(QA)、話題要約を含む3つのテキスト生成タスクについて実験を行った。
LLMRefineは、すべてのベースラインアプローチを一貫して上回り、翻訳タスクの1.7 MetricXポイント、ASQAの8.1 ROUGE-L、トピックの要約の2.2 ROUGE-Lの改善を実現している。
論文 参考訳(メタデータ) (2023-11-15T19:52:11Z) - Accelerating LLaMA Inference by Enabling Intermediate Layer Decoding via
Instruction Tuning with LITE [62.13435256279566]
大規模言語モデル(LLM)は、様々な自然言語タスクで顕著なパフォーマンスを実現している。
しかし、その大きなサイズは推論を遅く、計算的に高価にする。
最終層の生成能力に影響を与えることなく、これらの層が「良い」生成能力を得ることができることを示す。
論文 参考訳(メタデータ) (2023-10-28T04:07:58Z) - Studying the impacts of pre-training using ChatGPT-generated text on
downstream tasks [0.0]
本研究の目的は,言語モデルの事前学習における人工テキストの影響を検討することである。
我々は、CNN/DailyMailのニュース記事を用いて事前学習したRoBERTaと、同じ記事をトレーニングに用いたChatGPTの比較分析を行った。
事前学習における人工テキストの利用は、下流作業におけるモデルの性能や性別の偏りに有意な影響を与えないことを示す。
論文 参考訳(メタデータ) (2023-09-02T12:56:15Z) - "Generate" the Future of Work through AI: Empirical Evidence from Online Labor Markets [4.955822723273599]
大規模言語モデル(LLM)に基づく生成AI(ChatGPTなど)は、人工知能(AGI)の第1世代と考えられている。
我々の論文は、労働市場に対するAIの影響と個人の反応に関する重要な洞察を提供する。
論文 参考訳(メタデータ) (2023-08-09T19:45:00Z) - How Does Pretraining Improve Discourse-Aware Translation? [41.20896077662125]
本稿では,事前学習した言語モデルが会話関係の知識を捉える能力を理解するための探索タスクを提案する。
我々は、エンコーダ-、デコーダ-、およびエンコーダ-デコーダ-ベースモデルの3つの最先端PLMを検証する。
本研究は, PLMにおける言論的知識が下流作業にどのように機能するか, どのように機能するかを理解するための指導的手法である。
論文 参考訳(メタデータ) (2023-05-31T13:36:51Z) - Exploring Human-Like Translation Strategy with Large Language Models [93.49333173279508]
大規模言語モデル(LLM)は、一般的なシナリオにおいて印象的な機能を示している。
本研究は,マルチアスペクト・プロンプトと選択のためのMAPSフレームワークを提案する。
品質推定に基づく選択機構を用いて,ノイズや不ヘッピーな知識を抽出する。
論文 参考訳(メタデータ) (2023-05-06T19:03:12Z) - Document-Level Machine Translation with Large Language Models [91.03359121149595]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクに対して、一貫性、凝集性、関連性、流動性のある回答を生成することができる。
本稿では,LLMの談話モデルにおける能力について詳細に評価する。
論文 参考訳(メタデータ) (2023-04-05T03:49:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。