論文の概要: AI and Jobs: Has the Inflection Point Arrived? Evidence from an Online Labor Platform
- arxiv url: http://arxiv.org/abs/2312.04180v2
- Date: Fri, 23 Aug 2024 15:29:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 20:08:57.628034
- Title: AI and Jobs: Has the Inflection Point Arrived? Evidence from an Online Labor Platform
- Title(参考訳): AIとジョブ: インフレクションポイントは生まれたか?オンライン労働プラットフォームからの証拠
- Authors: Dandan Qiao, Huaxia Rui, Qian Xiong,
- Abstract要約: 我々は、AIが異なるオンライン労働市場(OLM)のフリーランサーにどのように影響するかを調査する。
そこで我々はCournot型競合モデルを開発した。
合衆国のWebデベロッパは、他のリージョンに比べてChatGPTのリリースの恩恵を受ける傾向にある。
- 参考スコア(独自算出の注目度): 0.13124513975412255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of Large Language Models (LLMs) has renewed the debate on the important issue of "technology displacement". While prior research has investigated the effect of information technology in general on human labor from a macro perspective, this paper complements the literature by examining the impact of LLMs on freelancers from a micro perspective. Specifically, we leverage the release of ChatGPT to investigate how AI influences freelancers across different online labor markets (OLMs). Employing the Difference-in-Differences method, we discovered two distinct scenarios following ChatGPT's release: 1) the displacement effect of LLMs, featuring reduced work volume and earnings, as is exemplified by the translation & localization OLM; 2) the productivity effect of LLMs, featuring increased work volume and earnings, as is exemplified by the web development OLM. To shed light on the underlying mechanisms, we developed a Cournot-type competition model to highlight the existence of an inflection point for each occupation which separates the timeline of AI progress into a honeymoon phase and a substitution phase. Before AI performance crosses the inflection point, human labor benefits each time AI improves, resulting in the honeymoon phase. However, after AI performance crosses the inflection point, additional AI enhancement hurts human labor. Further analyzing the progression from ChatGPT 3.5 to 4.0, we found three effect scenarios (i.e., productivity to productivity, displacement to displacement, and productivity to displacement), consistent with the inflection point conjecture. Heterogeneous analyses reveal that U.S. web developers tend to benefit more from the release of ChatGPT compared to their counterparts in other regions, and somewhat surprisingly, experienced translators seem more likely to exit the market than less experienced translators after the release of ChatGPT.
- Abstract(参考訳): 大規模言語モデル (LLMs) の出現は「技術移転」の重要な問題に関する議論を再燃させた。
マクロの観点からは,情報技術が人的労働に与える影響を概ね調査してきたが,この論文はマイクロ視点からLLMがフリーランサーに与える影響を調べることによって,文献を補完するものである。
具体的には、ChatGPTのリリースを活用して、さまざまなオンライン労働市場(OLM)のフリーランサーにAIがどのように影響するかを調査します。
差分差分法を用いて、ChatGPTのリリース後、2つの異なるシナリオを発見した。
1 LLMの変位効果は、OLMの翻訳・ローカライゼーションの例に示すように、作業量及び収益の減少を特徴とする。
2) LLM の生産性効果は,Web 開発 OLM の例に示すように,作業量や収益の増大を特徴としている。
そこで我々は,AIの進行のタイムラインをハネムーンフェーズと置換フェーズに分割した,職業ごとの摂動点の存在を強調するために,Cournot型競争モデルを開発した。
AIのパフォーマンスが摂動点を越える前に、AIが改善するたびに人間の労働力が恩恵を受け、ハネムーンフェーズが生まれる。
しかし、AIのパフォーマンスが摂動点を超えた後、追加のAI拡張は人間の労働を損なう。
さらに、ChatGPT 3.5から4.0までの進行を解析した結果、3つの効果シナリオ(生産性から生産性へ、変位へ、生産性から変位へ)が屈折点予想と一致していることが判明した。
異質な分析によると、米国のウェブ開発者は他の地域の翻訳者に比べてChatGPTのリリースの恩恵を受ける傾向にあり、やや驚くべきことに、経験豊富な翻訳者がChatGPTのリリース後に経験の浅い翻訳者より市場を去る傾向にある。
関連論文リスト
- LLMs are Imperfect, Then What? An Empirical Study on LLM Failures in Software Engineering [38.20696656193963]
非自明なソフトウェアエンジニアリングタスクにおいて,ChatGPTをコーディングアシスタントとして使用した22名の参加者を対象に,観察的研究を行った。
そこで我々は,ChatGPTが失敗した事例,その根本原因,およびユーザが使用する緩和ソリューションを特定した。
論文 参考訳(メタデータ) (2024-11-15T03:29:41Z) - Mitigating the Language Mismatch and Repetition Issues in LLM-based Machine Translation via Model Editing [39.375342978538654]
機械翻訳を行うためにLLM(Large Language Models)を活用することに注力する。
誤りの2つのパターンが頻繁に発生し、言語ミスマッチと繰り返しの翻訳品質に劇的な影響を与えていることを観察する。
モデル編集手法を活用することにより,これらの2つの問題を緩和する可能性について検討する。
論文 参考訳(メタデータ) (2024-10-09T16:51:21Z) - Feedback Loops With Language Models Drive In-Context Reward Hacking [78.9830398771605]
フィードバックループがコンテキスト内報酬ハッキング(ICRH)を引き起こす可能性があることを示す。
ICRHに繋がる2つのプロセス、すなわちアウトプット・リファインメントとポリシー・リファインメントを同定し研究する。
AI開発が加速するにつれて、フィードバックループの効果が増大する。
論文 参考訳(メタデータ) (2024-02-09T18:59:29Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
最近の大規模言語モデル(LLM)は、世代品質を改善するために人間のフィードバックを活用している。
LLMの出力を最適化する推論時間最適化手法であるLLMRefineを提案する。
機械翻訳、長文質問応答(QA)、話題要約を含む3つのテキスト生成タスクについて実験を行った。
LLMRefineは、すべてのベースラインアプローチを一貫して上回り、翻訳タスクの1.7 MetricXポイント、ASQAの8.1 ROUGE-L、トピックの要約の2.2 ROUGE-Lの改善を実現している。
論文 参考訳(メタデータ) (2023-11-15T19:52:11Z) - Accelerating LLaMA Inference by Enabling Intermediate Layer Decoding via
Instruction Tuning with LITE [62.13435256279566]
大規模言語モデル(LLM)は、様々な自然言語タスクで顕著なパフォーマンスを実現している。
しかし、その大きなサイズは推論を遅く、計算的に高価にする。
最終層の生成能力に影響を与えることなく、これらの層が「良い」生成能力を得ることができることを示す。
論文 参考訳(メタデータ) (2023-10-28T04:07:58Z) - Studying the impacts of pre-training using ChatGPT-generated text on
downstream tasks [0.0]
本研究の目的は,言語モデルの事前学習における人工テキストの影響を検討することである。
我々は、CNN/DailyMailのニュース記事を用いて事前学習したRoBERTaと、同じ記事をトレーニングに用いたChatGPTの比較分析を行った。
事前学習における人工テキストの利用は、下流作業におけるモデルの性能や性別の偏りに有意な影響を与えないことを示す。
論文 参考訳(メタデータ) (2023-09-02T12:56:15Z) - "Generate" the Future of Work through AI: Empirical Evidence from Online Labor Markets [4.955822723273599]
大規模言語モデル(LLM)に基づく生成AI(ChatGPTなど)は、人工知能(AGI)の第1世代と考えられている。
我々の論文は、労働市場に対するAIの影響と個人の反応に関する重要な洞察を提供する。
論文 参考訳(メタデータ) (2023-08-09T19:45:00Z) - How Does Pretraining Improve Discourse-Aware Translation? [41.20896077662125]
本稿では,事前学習した言語モデルが会話関係の知識を捉える能力を理解するための探索タスクを提案する。
我々は、エンコーダ-、デコーダ-、およびエンコーダ-デコーダ-ベースモデルの3つの最先端PLMを検証する。
本研究は, PLMにおける言論的知識が下流作業にどのように機能するか, どのように機能するかを理解するための指導的手法である。
論文 参考訳(メタデータ) (2023-05-31T13:36:51Z) - Exploring Human-Like Translation Strategy with Large Language Models [93.49333173279508]
大規模言語モデル(LLM)は、一般的なシナリオにおいて印象的な機能を示している。
本研究は,マルチアスペクト・プロンプトと選択のためのMAPSフレームワークを提案する。
品質推定に基づく選択機構を用いて,ノイズや不ヘッピーな知識を抽出する。
論文 参考訳(メタデータ) (2023-05-06T19:03:12Z) - Document-Level Machine Translation with Large Language Models [91.03359121149595]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクに対して、一貫性、凝集性、関連性、流動性のある回答を生成することができる。
本稿では,LLMの談話モデルにおける能力について詳細に評価する。
論文 参考訳(メタデータ) (2023-04-05T03:49:06Z) - Examining Scaling and Transfer of Language Model Architectures for
Machine Translation [51.69212730675345]
言語モデル(LM)は単一のレイヤのスタックで処理し、エンコーダ・デコーダモデル(EncDec)は入力と出力の処理に別々のレイヤスタックを使用する。
機械翻訳において、EncDecは長年好まれてきたアプローチであるが、LMの性能についての研究はほとんどない。
論文 参考訳(メタデータ) (2022-02-01T16:20:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。