論文の概要: Enhancing Medical Task Performance in GPT-4V: A Comprehensive Study on
Prompt Engineering Strategies
- arxiv url: http://arxiv.org/abs/2312.04344v1
- Date: Thu, 7 Dec 2023 15:05:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-08 14:29:19.147175
- Title: Enhancing Medical Task Performance in GPT-4V: A Comprehensive Study on
Prompt Engineering Strategies
- Title(参考訳): GPT-4Vにおける医療タスクパフォーマンスの向上:プロンプトエンジニアリング戦略の総合的研究
- Authors: Pengcheng Chen, Ziyan Huang, Zhongying Deng, Tianbin Li, Yanzhou Su,
Haoyu Wang, Jin Ye, Yu Qiao, Junjun He
- Abstract要約: OpenAIの最新大型ビジョン言語モデルであるGPT-4Vは、医療応用の可能性についてかなりの関心を集めている。
最近の研究や内部レビューでは、専門的な医療業務における過小評価が強調されている。
本稿では,GPT-4Vの医療機能の境界,特に内視鏡,CT,MRIなどの複雑な画像データ処理について検討する。
- 参考スコア(独自算出の注目度): 28.98518677093905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: OpenAI's latest large vision-language model (LVLM), GPT-4V(ision), has piqued
considerable interest for its potential in medical applications. Despite its
promise, recent studies and internal reviews highlight its underperformance in
specialized medical tasks. This paper explores the boundary of GPT-4V's
capabilities in medicine, particularly in processing complex imaging data from
endoscopies, CT scans, and MRIs etc. Leveraging open-source datasets, we
assessed its foundational competencies, identifying substantial areas for
enhancement. Our research emphasizes prompt engineering, an often-underutilized
strategy for improving AI responsiveness. Through iterative testing, we refined
the model's prompts, significantly improving its interpretative accuracy and
relevance in medical imaging. From our comprehensive evaluations, we distilled
10 effective prompt engineering techniques, each fortifying GPT-4V's medical
acumen. These methodical enhancements facilitate more reliable, precise, and
clinically valuable insights from GPT-4V, advancing its operability in critical
healthcare environments. Our findings are pivotal for those employing AI in
medicine, providing clear, actionable guidance on harnessing GPT-4V's full
diagnostic potential.
- Abstract(参考訳): openaiの最新大型ビジョン言語モデル(lvlm)であるgpt-4v(ision)は、医療応用におけるその可能性に大きな関心を集めている。
約束にもかかわらず、最近の研究や内部レビューは、専門的な医療業務における過小評価を強調している。
本稿では,GPT-4Vの医療機能の境界,特に内視鏡,CT,MRIなどの複雑な画像データ処理について検討する。
オープンソースデータセットを活用して、基礎的な能力を評価し、拡張のための相当な領域を特定しました。
我々の研究は、AIの応答性を改善するためのしばしば未利用の戦略である、迅速なエンジニアリングを強調している。
反復テストにより,モデルのプロンプトを改良し,医用画像の解釈精度と関連性を大幅に改善した。
包括的評価から, GPT-4Vの医療集積を増強する10種類の効果的なプロンプトエンジニアリング手法を抽出した。
これらの方法論的強化は、GPT-4Vの信頼性、正確、臨床的に価値のある洞察を促進する。
GPT-4Vの完全な診断能力を活かすための、明確で実用的なガイダンスを提供する。
関連論文リスト
- STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical Question-Answering [58.79671189792399]
STLLaVA-Medは、医療ビジュアルインストラクションデータを自動生成できるポリシーモデルを訓練するために設計されている。
STLLaVA-Medの有効性とデータ効率を3つの主要な医用視覚質問応答(VQA)ベンチマークで検証した。
論文 参考訳(メタデータ) (2024-06-28T15:01:23Z) - Hidden flaws behind expert-level accuracy of multimodal GPT-4 vision in medicine [15.491432387608112]
GPT-4V(Generative Pre-trained Transformer 4 with Vision)は、医学的課題において、医師よりも優れる。
本研究は,GPT-4Vのイメージ理解の理論的根拠,医用知識の想起,ステップバイステップのマルチモーダル推論を包括的に分析することにより,現在の範囲を拡大する。
論文 参考訳(メタデータ) (2024-01-16T14:41:20Z) - Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case
Study in Medicine [89.46836590149883]
本研究は, GPT-4の医学的課題評価における能力について, 専門訓練の欠如による先行研究に基づくものである。
イノベーションを促進することで、より深い専門能力が解放され、GPT-4が医学ベンチマークの先行結果に容易に勝っていることが分かる。
Medpromptを使用すると、GPT-4はMultiMedQAスイートのベンチマークデータセットの9つすべてに対して最先端の結果を得る。
論文 参考訳(メタデータ) (2023-11-28T03:16:12Z) - GPT-4V(ision) Unsuitable for Clinical Care and Education: A Clinician-Evaluated Assessment [6.321623278767821]
GPT-4Vは画像の一般的な解釈のために最近開発された。
また, GPT-4Vの熟練度は, 様々な医療条件で評価された。
GPT-4Vの診断精度と臨床的意思決定能力は乏しく、患者の安全性にリスクをもたらす。
論文 参考訳(メタデータ) (2023-11-14T17:06:09Z) - Holistic Evaluation of GPT-4V for Biomedical Imaging [113.46226609088194]
GPT-4Vはコンピュータビジョンのための人工知能の突破口である。
GPT-4Vは,放射線学,腫瘍学,眼科,病理学など16分野にまたがって評価を行った。
以上の結果より,GPT-4Vは異常や解剖学的認識に優れていたが,診断や局所化は困難であった。
論文 参考訳(メタデータ) (2023-11-10T18:40:44Z) - A Systematic Evaluation of GPT-4V's Multimodal Capability for Medical
Image Analysis [87.25494411021066]
医用画像解析のためのGPT-4Vのマルチモーダル機能の評価を行った。
GPT-4Vは医用画像の理解に優れ、高品質な放射線診断レポートを生成する。
医用視覚接地の性能は大幅に改善する必要があることが判明した。
論文 参考訳(メタデータ) (2023-10-31T11:39:09Z) - Multimodal ChatGPT for Medical Applications: an Experimental Study of
GPT-4V [20.84152508192388]
我々は、最先端のマルチモーダル言語モデルであるGPT-4 with Vision(GPT-4V)の能力について批判的に評価する。
本実験は,画像と組み合わせた問診におけるGPT-4Vの習熟度を,病理と放射線学の両方のデータセットを用いて徹底的に評価した。
精度試験の結果、GPT-4Vの現在のバージョンは現実世界の診断には推奨されないことがわかった。
論文 参考訳(メタデータ) (2023-10-29T16:26:28Z) - Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4VはOpenAIの最新のマルチモーダル診断モデルである。
評価対象は17の人体システムである。
GPT-4Vは、医用画像のモダリティと解剖学を区別する能力を示す。
疾患の診断と包括的報告作成において重大な課題に直面している。
論文 参考訳(メタデータ) (2023-10-15T18:32:27Z) - Capabilities of GPT-4 on Medical Challenge Problems [23.399857819743158]
GPT-4は、訓練や臨床課題の解決を通じて医療上の問題に特化しない汎用モデルである。
本稿では,GPT-4の総合的な評価を医学的能力試験とベンチマーク・データセットで行う。
論文 参考訳(メタデータ) (2023-03-20T16:18:38Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
新型コロナウイルス感染症(COVID-19)のパンデミックは世界中に広がっている。
X線やCT(Computerd Tomography)などの医用画像は、世界的な新型コロナウイルス対策に欠かせない役割を担っている。
最近登場した人工知能(AI)技術は、画像ツールの力を強化し、医療専門家を支援する。
論文 参考訳(メタデータ) (2020-04-06T15:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。