Transverse Recoil Imprinted on Free-Electron Radiation
- URL: http://arxiv.org/abs/2312.04383v2
- Date: Mon, 26 Aug 2024 22:36:50 GMT
- Title: Transverse Recoil Imprinted on Free-Electron Radiation
- Authors: Xihang Shi, Lee Wei Wesley Wong, Sunchao Huang, Liang Jie Wong, Ido Kaminer,
- Abstract summary: Phenomena of free-electron X-ray radiation are treated almost exclusively with classical electrodynamics.
Here we identify a fundamentally distinct phenomenon of electron radiation that bypasses this energy disparity.
This phenomenon profoundly modifies the characteristics of free-electron radiation mediated by crystals.
These quantum radiation features could guide the development of compact coherent X-ray sources facilitated by nanophotonics and quantum optics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Phenomena of free-electron X-ray radiation are treated almost exclusively with classical electrodynamics, despite the intrinsic interaction being that of quantum electrodynamics. The lack of quantumness arises from the vast disparity between the electron energy and the much smaller photon energy, resulting in a small cross-section that makes quantum effects negligible. Here we identify a fundamentally distinct phenomenon of electron radiation that bypasses this energy disparity, and thus displays extremely strong quantum features. This phenomenon arises when free-electron transverse scattering occurs during the radiation process, creating entanglement between each transversely recoiled electron and the photons it emitted. This phenomenon profoundly modifies the characteristics of free-electron radiation mediated by crystals, compared to conventional classical analysis and even previous quantum analysis. We also analyze conditions to detect this phenomenon using low-emittance electron beams and high-resolution X-ray spectrometers. These quantum radiation features could guide the development of compact coherent X-ray sources facilitated by nanophotonics and quantum optics.
Related papers
- Electrons herald non-classical light [0.44270590458998854]
We demonstrate the coherent parametric generation of non-classical states of light by free electrons.
We show that the quantized electron energy loss heralds the number of photons generated in a dielectric waveguide.
The approach facilitates the tailored preparation of higher-number Fock and other optical quantum states.
arXiv Detail & Related papers (2024-09-17T15:55:54Z) - Anomalous radiation reaction in a circularly polarized field [0.0]
An anomalous radiation reaction arises from the one-loop QED correction to the photon emission.
Possible manifestations of this phenomenon are discussed for electrons in strong laser fields.
arXiv Detail & Related papers (2024-08-14T16:51:55Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Optical pumping of electronic quantum Hall states with vortex light [2.7666936659353585]
A fundamental requirement for quantum technologies is the ability to coherently control the interaction between electrons and photons.
We present a novel mechanism for such an orbital angular momentum transfer from optical vortex beams to electronic quantum Hall states.
Our findings offer fundamental insights into the optical probing and manipulation of quantum coherence, with wide-ranging implications for advancing quantum coherent optoelectronics.
arXiv Detail & Related papers (2023-06-06T05:35:51Z) - Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples [91.3755431537592]
Relativistic electrons experience very slight wave packet distortion and negligible momentum recoil when interacting with nanometer-sized samples.
Modelling fast electrons as classical point-charges provides extremely accurate theoretical predictions of energy-loss spectra.
arXiv Detail & Related papers (2022-11-14T15:22:37Z) - Observation of 2D Cherenkov radiation [3.8781681989221672]
In reduced dimensionality, the properties of free-electron radiation are predicted to fundamentally change.
We present the first observation of Cherenkov surface waves, wherein free electrons emit narrow-bandwidth photonic quasiparticles propagating in two-dimensions.
Our results support the recent theoretical prediction that free electrons do not always emit classical light and can instead become entangled with the photons they emit.
arXiv Detail & Related papers (2022-03-03T13:12:34Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Electronic Quantum Coherence in Glycine Molecules Probed with Ultrashort
X-ray Pulses in Real Time [0.8523919911999691]
Quantum coherence between electronic states of a photoionized molecule and the resulting process of ultrafast electron-hole migration has been put forward as a possible quantum mechanism of charge-directed reactivity governing the photoionization-induced molecular decomposition.
Here, we use x-rays both to create and to directly probe quantum coherence in the photoionized amino acid glycine.
Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay and by the photoelectron emission from sequential double photoionization.
arXiv Detail & Related papers (2020-12-09T04:06:12Z) - Topological photon pairs in a superconducting quantum metamaterial [44.62475518267084]
We use an array of superconducting qubits to engineer a nontrivial quantum metamaterial.
By performing microwave spectroscopy of the fabricated array, we experimentally observe the spectrum of elementary excitations.
We find not only the single-photon topological states but also the bands of exotic bound photon pairs arising due to the inherent anharmonicity of qubits.
arXiv Detail & Related papers (2020-06-23T07:04:27Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.