Anomalous radiation reaction in a circularly polarized field
- URL: http://arxiv.org/abs/2408.07664v3
- Date: Mon, 21 Oct 2024 16:11:42 GMT
- Title: Anomalous radiation reaction in a circularly polarized field
- Authors: O. V. Kibis,
- Abstract summary: An anomalous radiation reaction arises from the one-loop QED correction to the photon emission.
Possible manifestations of this phenomenon are discussed for electrons in strong laser fields.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum corrections to electron dynamics in a circularly polarized electromagnetic field are found within the Floquet theory of periodically driven quantum systems. It is demonstrated that emission of photons by an electron rotating under the field leads to the quantum recoil force acting on the electron perpendicularly to the velocity of its forward movement, which differs crucially from the known classical recoil force directed oppositely to the velocity. Physically, such an anomalous radiation reaction arises from the one-loop QED correction to the photon emission and has no analogue within the classical electrodynamics. Possible manifestations of this phenomenon are discussed for electrons in strong laser fields.
Related papers
- Electrons herald non-classical light [0.44270590458998854]
We demonstrate the coherent parametric generation of non-classical states of light by free electrons.
We show that the quantized electron energy loss heralds the number of photons generated in a dielectric waveguide.
The approach facilitates the tailored preparation of higher-number Fock and other optical quantum states.
arXiv Detail & Related papers (2024-09-17T15:55:54Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Transverse Recoil Imprinted on Free-Electron Radiation [0.0]
Phenomena of free-electron X-ray radiation are treated almost exclusively with classical electrodynamics.
Here we identify a fundamentally distinct phenomenon of electron radiation that bypasses this energy disparity.
This phenomenon profoundly modifies the characteristics of free-electron radiation mediated by crystals.
These quantum radiation features could guide the development of compact coherent X-ray sources facilitated by nanophotonics and quantum optics.
arXiv Detail & Related papers (2023-12-07T15:52:24Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Optical pumping of electronic quantum Hall states with vortex light [2.7666936659353585]
A fundamental requirement for quantum technologies is the ability to coherently control the interaction between electrons and photons.
We present a novel mechanism for such an orbital angular momentum transfer from optical vortex beams to electronic quantum Hall states.
Our findings offer fundamental insights into the optical probing and manipulation of quantum coherence, with wide-ranging implications for advancing quantum coherent optoelectronics.
arXiv Detail & Related papers (2023-06-06T05:35:51Z) - Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples [91.3755431537592]
Relativistic electrons experience very slight wave packet distortion and negligible momentum recoil when interacting with nanometer-sized samples.
Modelling fast electrons as classical point-charges provides extremely accurate theoretical predictions of energy-loss spectra.
arXiv Detail & Related papers (2022-11-14T15:22:37Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Electrons in intense laser fields with local phase, polarization, and
skyrmionic textures [0.0]
We derive expressions for the wave function of an unbound electron subject to a structured, intense laser field.
It is also shown that photoelectrons can be accelerated or momentum when moving through a focused, intense laser field.
arXiv Detail & Related papers (2020-11-25T11:52:44Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.