論文の概要: HyperDreamer: Hyper-Realistic 3D Content Generation and Editing from a
Single Image
- arxiv url: http://arxiv.org/abs/2312.04543v1
- Date: Thu, 7 Dec 2023 18:58:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-08 13:34:27.154005
- Title: HyperDreamer: Hyper-Realistic 3D Content Generation and Editing from a
Single Image
- Title(参考訳): HyperDreamer: 単一画像からのハイパーリアリスティックな3Dコンテンツ生成と編集
- Authors: Tong Wu, Zhibing Li, Shuai Yang, Pan Zhang, Xinggang Pan, Jiaqi Wang,
Dahua Lin, Ziwei Liu
- Abstract要約: 一つの画像から3Dコンテンツを作成するためのツールであるHyperDreamerを紹介します。
ユーザーは、結果の3Dコンテンツをフル範囲から閲覧、レンダリング、編集できないため、ポストジェネレーションの使用には十分である。
高分解能なテクスチャとユーザフレンドリーな編集が可能な領域認識素材のモデリングにおけるHyperDreamerの有効性を実証する。
- 参考スコア(独自算出の注目度): 94.11473240505534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D content creation from a single image is a long-standing yet highly
desirable task. Recent advances introduce 2D diffusion priors, yielding
reasonable results. However, existing methods are not hyper-realistic enough
for post-generation usage, as users cannot view, render and edit the resulting
3D content from a full range. To address these challenges, we introduce
HyperDreamer with several key designs and appealing properties: 1) Viewable:
360 degree mesh modeling with high-resolution textures enables the creation of
visually compelling 3D models from a full range of observation points. 2)
Renderable: Fine-grained semantic segmentation and data-driven priors are
incorporated as guidance to learn reasonable albedo, roughness, and specular
properties of the materials, enabling semantic-aware arbitrary material
estimation. 3) Editable: For a generated model or their own data, users can
interactively select any region via a few clicks and efficiently edit the
texture with text-based guidance. Extensive experiments demonstrate the
effectiveness of HyperDreamer in modeling region-aware materials with
high-resolution textures and enabling user-friendly editing. We believe that
HyperDreamer holds promise for advancing 3D content creation and finding
applications in various domains.
- Abstract(参考訳): 単一の画像から3Dコンテンツを作るのは、長く続くが非常に望ましい仕事だ。
最近の進歩は2次元拡散に先行し、合理的な結果をもたらす。
しかし、既存の手法は、ユーザが完全な3Dコンテンツを閲覧、レンダリング、編集できないため、ポストジェネレーションの使用には十分ではない。
これらの課題に対処するために、いくつかの重要な設計と魅力的な特性を備えたHyperDreamerを紹介します。
1)視認性:高分解能テクスチャを用いた360度メッシュモデリングにより,全視点から視覚的に魅力的な3Dモデルを作成することができる。
2) レンダリング可能: 細粒度セマンティックセグメンテーションとデータ駆動前処理は, 素材の合理的なアルベド, 粗さ, 鏡面特性を学習するためのガイダンスとして組み込まれ, 任意の材料推定を意味的に認識できる。
3) 編集可能: 生成されたモデルや自身のデータに対して、ユーザは数クリックで任意の領域をインタラクティブに選択でき、テキストベースのガイダンスでテクスチャを効率的に編集できる。
高分解能なテクスチャとユーザフレンドリーな編集が可能な領域認識素材のモデリングにおけるHyperDreamerの有効性を示す。
HyperDreamerは3Dコンテンツの作成と、さまざまな分野のアプリケーションを見つけることを約束しています。
関連論文リスト
- Chat-Edit-3D: Interactive 3D Scene Editing via Text Prompts [76.73043724587679]
CE3Dと呼ばれる対話型3Dシーン編集手法を提案する。
Hash-Atlasは3Dシーンビューを表し、3Dシーンの編集を2Dアトラスイメージに転送する。
その結果、CE3Dは複数の視覚モデルを効果的に統合し、多様な視覚効果が得られることを示した。
論文 参考訳(メタデータ) (2024-07-09T13:24:42Z) - ViewDiff: 3D-Consistent Image Generation with Text-to-Image Models [65.22994156658918]
実世界のデータから1つの認知過程において多視点画像を生成することを学習する手法を提案する。
我々は、任意の視点でより多くの3D一貫性のある画像をレンダリングする自己回帰生成を設計する。
論文 参考訳(メタデータ) (2024-03-04T07:57:05Z) - En3D: An Enhanced Generative Model for Sculpting 3D Humans from 2D
Synthetic Data [36.51674664590734]
本研究では,高品質な3次元アバターの小型化を図ったEn3Dを提案する。
従来の3Dデータセットの不足や、視角が不均衡な限られた2Dコレクションと異なり、本研究の目的は、ゼロショットで3D人間を作れる3Dの開発である。
論文 参考訳(メタデータ) (2024-01-02T12:06:31Z) - X-Dreamer: Creating High-quality 3D Content by Bridging the Domain Gap Between Text-to-2D and Text-to-3D Generation [61.48050470095969]
X-Dreamerは高品質なテキストから3Dコンテンツを作成するための新しいアプローチである。
テキスト対2D合成とテキスト対3D合成のギャップを埋める。
論文 参考訳(メタデータ) (2023-11-30T07:23:00Z) - Breathing New Life into 3D Assets with Generative Repainting [74.80184575267106]
拡散ベースのテキスト・ツー・イメージ・モデルは、ビジョン・コミュニティ、アーティスト、コンテンツ・クリエーターから大きな注目を集めた。
近年の研究では、拡散モデルとニューラルネットワークの絡み合いを利用した様々なパイプラインが提案されている。
予備訓練された2次元拡散モデルと標準3次元ニューラルラジアンスフィールドのパワーを独立したスタンドアロンツールとして検討する。
我々のパイプラインはテクスチャ化されたメッシュや無テクスチャのメッシュのような、レガシなレンダリング可能な幾何学を受け入れ、2D生成の洗練と3D整合性強化ツール間の相互作用をオーケストレーションします。
論文 参考訳(メタデータ) (2023-09-15T16:34:51Z) - Fantasia3D: Disentangling Geometry and Appearance for High-quality
Text-to-3D Content Creation [45.69270771487455]
本稿では,高品質なテキスト・ツー・3Dコンテンツ作成のためのFantasia3Dの新たな手法を提案する。
Fantasia3Dの鍵となるのは、幾何学と外観の混乱したモデリングと学習である。
我々のフレームワークは、人気のあるグラフィックスエンジンとより互換性があり、生成した3Dアセットのリライティング、編集、物理シミュレーションをサポートしています。
論文 参考訳(メタデータ) (2023-03-24T09:30:09Z) - Next3D: Generative Neural Texture Rasterization for 3D-Aware Head
Avatars [36.4402388864691]
3D-Aware Generative Adversarial Network (GANs) は, 単一視点2D画像のコレクションのみを用いて, 高忠実かつ多視点の顔画像を合成する。
最近の研究は、3D Morphable Face Model (3DMM) を用いて、生成放射場における変形を明示的または暗黙的に記述している。
本研究では,非構造化2次元画像から生成的,高品質,かつ3D一貫性のある顔アバターの教師なし学習のための新しい3D GANフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-21T06:40:46Z) - GET3D: A Generative Model of High Quality 3D Textured Shapes Learned
from Images [72.15855070133425]
本稿では,複雑なトポロジ,リッチな幾何学的ディテール,高忠実度テクスチャを備えたExplicit Textured 3Dメッシュを直接生成する生成モデルであるGET3Dを紹介する。
GET3Dは、車、椅子、動物、バイク、人間キャラクターから建物まで、高品質な3Dテクスチャメッシュを生成することができる。
論文 参考訳(メタデータ) (2022-09-22T17:16:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。