論文の概要: Breathing New Life into 3D Assets with Generative Repainting
- arxiv url: http://arxiv.org/abs/2309.08523v2
- Date: Wed, 18 Oct 2023 15:34:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-19 12:57:56.538495
- Title: Breathing New Life into 3D Assets with Generative Repainting
- Title(参考訳): ジェネレーティブ・リパインティングによる3dアセットへの新生命の吹き込み
- Authors: Tianfu Wang, Menelaos Kanakis, Konrad Schindler, Luc Van Gool, Anton
Obukhov
- Abstract要約: 拡散ベースのテキスト・ツー・イメージ・モデルは、ビジョン・コミュニティ、アーティスト、コンテンツ・クリエーターから大きな注目を集めた。
近年の研究では、拡散モデルとニューラルネットワークの絡み合いを利用した様々なパイプラインが提案されている。
予備訓練された2次元拡散モデルと標準3次元ニューラルラジアンスフィールドのパワーを独立したスタンドアロンツールとして検討する。
我々のパイプラインはテクスチャ化されたメッシュや無テクスチャのメッシュのような、レガシなレンダリング可能な幾何学を受け入れ、2D生成の洗練と3D整合性強化ツール間の相互作用をオーケストレーションします。
- 参考スコア(独自算出の注目度): 74.80184575267106
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Diffusion-based text-to-image models ignited immense attention from the
vision community, artists, and content creators. Broad adoption of these models
is due to significant improvement in the quality of generations and efficient
conditioning on various modalities, not just text. However, lifting the rich
generative priors of these 2D models into 3D is challenging. Recent works have
proposed various pipelines powered by the entanglement of diffusion models and
neural fields. We explore the power of pretrained 2D diffusion models and
standard 3D neural radiance fields as independent, standalone tools and
demonstrate their ability to work together in a non-learned fashion. Such
modularity has the intrinsic advantage of eased partial upgrades, which became
an important property in such a fast-paced domain. Our pipeline accepts any
legacy renderable geometry, such as textured or untextured meshes, orchestrates
the interaction between 2D generative refinement and 3D consistency enforcement
tools, and outputs a painted input geometry in several formats. We conduct a
large-scale study on a wide range of objects and categories from the
ShapeNetSem dataset and demonstrate the advantages of our approach, both
qualitatively and quantitatively. Project page:
https://www.obukhov.ai/repainting_3d_assets
- Abstract(参考訳): 拡散ベースのテキストから画像へのモデルは、視覚コミュニティ、アーティスト、コンテンツクリエーターから多大な注目を集めた。
これらのモデルの広範な採用は、世代の品質が大幅に向上し、テキストだけでなく様々なモダリティの効率的な条件付けが原因である。
しかし、これらの2Dモデルの豊かな生成前のものを3Dにするのは難しい。
近年の研究では、拡散モデルとニューラルネットワークの絡み合いを利用した様々なパイプラインが提案されている。
学習済みの2次元拡散モデルと標準3次元神経放射野のパワーを独立して独立したツールとして検討し,非学習的な方法で協調する能力を示す。
このようなモジュール性には、部分的なアップグレードが容易になるという本質的なメリットがある。
私たちのパイプラインは、テクスチャや非テクスチャのメッシュといった、レガシなレンダリング可能なジオメトリを受け入れ、2d生成的リファインメントと3d一貫性実行ツールのインタラクションをオーケストレーションし、塗装された入力ジオメトリを複数のフォーマットで出力します。
本研究では、ShapeNetSemデータセットから広範囲のオブジェクトやカテゴリについて大規模な研究を行い、質的かつ定量的にアプローチの利点を実証する。
プロジェクトページ: https://www.obukhov.ai/repainting_3d_assets
関連論文リスト
- Diffusion Models in 3D Vision: A Survey [11.116658321394755]
本稿では,3次元視覚タスクの拡散モデルを利用する最先端のアプローチについて概説する。
これらのアプローチには、3Dオブジェクト生成、形状補完、点雲再構成、シーン理解が含まれる。
本稿では,計算効率の向上,マルチモーダル融合の強化,大規模事前学習の活用などの可能性について論じる。
論文 参考訳(メタデータ) (2024-10-07T04:12:23Z) - 3DTopia-XL: Scaling High-quality 3D Asset Generation via Primitive Diffusion [86.25111098482537]
3DTopia-XLは,既存の手法の限界を克服するために設計された,スケーラブルなネイティブな3D生成モデルである。
3DTopia-XLは、新しいプリミティブベースの3D表現であるPrimXを利用して、詳細な形状、アルベド、マテリアルフィールドをコンパクトなテンソル形式にエンコードする。
その上で, 1) 原始的パッチ圧縮, 2) および潜在的原始的拡散を含む拡散変換器(DiT)に基づく生成フレームワークを提案する。
我々は,3DTopia-XLが既存の手法よりも高い性能を示すことを示すために,広範囲な定性的,定量的な実験を行った。
論文 参考訳(メタデータ) (2024-09-19T17:59:06Z) - 3D-VirtFusion: Synthetic 3D Data Augmentation through Generative Diffusion Models and Controllable Editing [52.68314936128752]
本研究では,事前学習された大規模基盤モデルのパワーを活用して,3次元ラベル付きトレーニングデータを自動的に生成する新しいパラダイムを提案する。
各ターゲットセマンティッククラスに対して、まず、拡散モデルとチャットGPT生成したテキストプロンプトを介して、様々な構造と外観の1つのオブジェクトの2D画像を生成する。
我々は、これらの拡張画像を3Dオブジェクトに変換し、ランダムな合成によって仮想シーンを構築する。
論文 参考訳(メタデータ) (2024-08-25T09:31:22Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
本稿では,2次元拡散モデルを再学習することなく,抽出した参照オブジェクトから3次元先行を明示的に注入する,電流パイプラインを備えた新しいフレームワークSculpt3Dを提案する。
具体的には、スパース線サンプリングによるキーポイントの監督により、高品質で多様な3次元形状を保証できることを実証する。
これら2つの分離された設計は、参照オブジェクトからの3D情報を利用して、2D拡散モデルの生成品質を保ちながら、3Dオブジェクトを生成する。
論文 参考訳(メタデータ) (2024-03-14T07:39:59Z) - Pushing Auto-regressive Models for 3D Shape Generation at Capacity and Scalability [118.26563926533517]
自己回帰モデルでは,格子空間における関節分布をモデル化することにより,2次元画像生成において顕著な結果が得られた。
自動回帰モデルを3次元領域に拡張し,キャパシティとスケーラビリティを同時に向上することにより,3次元形状生成の強力な能力を求める。
論文 参考訳(メタデータ) (2024-02-19T15:33:09Z) - Retrieval-Augmented Score Distillation for Text-to-3D Generation [30.57225047257049]
テキストから3D生成における検索に基づく品質向上のための新しいフレームワークを提案する。
我々はReDreamが幾何整合性を高めて優れた品質を示すことを示すために広範な実験を行った。
論文 参考訳(メタデータ) (2024-02-05T12:50:30Z) - En3D: An Enhanced Generative Model for Sculpting 3D Humans from 2D
Synthetic Data [36.51674664590734]
本研究では,高品質な3次元アバターの小型化を図ったEn3Dを提案する。
従来の3Dデータセットの不足や、視角が不均衡な限られた2Dコレクションと異なり、本研究の目的は、ゼロショットで3D人間を作れる3Dの開発である。
論文 参考訳(メタデータ) (2024-01-02T12:06:31Z) - 3DGen: Triplane Latent Diffusion for Textured Mesh Generation [17.178939191534994]
三面体VAEは、テクスチャメッシュの潜時表現を学習し、条件拡散モデルが三面体の特徴を生成する。
このアーキテクチャは初めて、高品質なテクスチャ化された、3Dメッシュの条件付きおよび非条件生成を可能にする。
メッシュの品質とテクスチャ生成において、イメージコンディショニングと非コンディショナリ生成において、従来よりも大幅にパフォーマンスが向上した。
論文 参考訳(メタデータ) (2023-03-09T16:18:14Z) - 3D Neural Field Generation using Triplane Diffusion [37.46688195622667]
ニューラルネットワークの3次元認識のための効率的な拡散ベースモデルを提案する。
当社のアプローチでは,ShapeNetメッシュなどのトレーニングデータを,連続的占有フィールドに変換することによって前処理する。
本論文では,ShapeNetのオブジェクトクラスにおける3D生成の現状について述べる。
論文 参考訳(メタデータ) (2022-11-30T01:55:52Z) - Deep Generative Models on 3D Representations: A Survey [81.73385191402419]
生成モデルは、新しいインスタンスを生成することによって観測データの分布を学習することを目的としている。
最近、研究者は焦点を2Dから3Dにシフトし始めた。
3Dデータの表現は、非常に大きな課題をもたらします。
論文 参考訳(メタデータ) (2022-10-27T17:59:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。