論文の概要: Towards a Psychological Generalist AI: A Survey of Current Applications
of Large Language Models and Future Prospects
- arxiv url: http://arxiv.org/abs/2312.04578v1
- Date: Fri, 1 Dec 2023 08:35:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 14:57:45.435899
- Title: Towards a Psychological Generalist AI: A Survey of Current Applications
of Large Language Models and Future Prospects
- Title(参考訳): 心理学的ジェネリストAIに向けて:大規模言語モデルの現状と今後の展望
- Authors: Tianyu He, Guanghui Fu, Yijing Yu, Fan Wang, Jianqiang Li, Qing Zhao,
Changwei Song, Hongzhi Qi, Dan Luo, Huijing Zou, Bing Xiang Yang
- Abstract要約: 本稿では,大規模AIモデルの性能検証の重要性を強調する。
心理学におけるこれらの拡張モデルの最先端の進歩と実践的実装を概観する。
これらの未来のジェネラリストAIモデルは、労働コストを大幅に削減し、社会的ストレスを軽減する可能性を秘めている。
- 参考スコア(独自算出の注目度): 19.46832545633166
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The complexity of psychological principles underscore a significant societal
challenge, given the vast social implications of psychological problems.
Bridging the gap between understanding these principles and their actual
clinical and real-world applications demands rigorous exploration and adept
implementation. In recent times, the swift advancement of highly adaptive and
reusable artificial intelligence (AI) models has emerged as a promising way to
unlock unprecedented capabilities in the realm of psychology. This paper
emphasizes the importance of performance validation for these large-scale AI
models, emphasizing the need to offer a comprehensive assessment of their
verification from diverse perspectives. Moreover, we review the cutting-edge
advancements and practical implementations of these expansive models in
psychology, highlighting pivotal work spanning areas such as social media
analytics, clinical nursing insights, vigilant community monitoring, and the
nuanced exploration of psychological theories. Based on our review, we project
an acceleration in the progress of psychological fields, driven by these
large-scale AI models. These future generalist AI models harbor the potential
to substantially curtail labor costs and alleviate social stress. However, this
forward momentum will not be without its set of challenges, especially when
considering the paradigm changes and upgrades required for medical
instrumentation and related applications.
- Abstract(参考訳): 心理学的原理の複雑さは、心理学的問題の大きな社会的意味合いを考えると、社会的な課題の核心となる。
これらの原則と実際の臨床および実世界の応用とのギャップを埋めるには、厳密な調査と適切な実装が必要である。
近年、高度に適応的で再利用可能な人工知能(AI)モデルの急速な進歩は、心理学の領域における前例のない能力を解き放つための有望な方法として現れている。
本稿では,これらの大規模AIモデルの性能検証の重要性を強調し,多様な視点から検証を包括的に評価する必要性を強調した。
さらに, ソーシャルメディア分析, 臨床看護の洞察, 警戒的コミュニティモニタリング, 心理学理論の曖昧な探索など, 幅広い領域にまたがる重要な作業に注目し, 心理学におけるこれらの拡張モデルの最先端の進歩と実践的実装を概観する。
本稿では,これらの大規模aiモデルを用いて,心理学的分野の進歩の加速を予測する。
これらの未来の汎用AIモデルは、労働コストを大幅に削減し、社会的ストレスを軽減する可能性を秘めている。
しかし、この前進の勢いは、特に医療機器や関連アプリケーションに必要なパラダイムの変更やアップグレードを考える場合に、いくつかの課題を伴わない。
関連論文リスト
- Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
心理的な測定は、精神健康、自己理解、そして個人の発達に不可欠である。
心理学ゲームAgenT(サイコガト)は、信頼性、収束妥当性、差別的妥当性などの心理学的指標において統計的に有意な卓越性を達成している。
論文 参考訳(メタデータ) (2024-02-19T18:00:30Z) - Challenges of Large Language Models for Mental Health Counseling [4.604003661048267]
世界のメンタルヘルス危機は、精神疾患の急速な増加、限られた資源、治療を求める社会的便宜によって悪化している。
メンタルヘルス領域における大規模言語モデル(LLM)の適用は、提供された情報の正確性、有効性、信頼性に関する懸念を提起する。
本稿では, モデル幻覚, 解釈可能性, バイアス, プライバシ, 臨床効果など, 心理カウンセリングのためのLSMの開発に伴う課題について検討する。
論文 参考訳(メタデータ) (2023-11-23T08:56:41Z) - Enhancing Psychological Counseling with Large Language Model: A
Multifaceted Decision-Support System for Non-Professionals [31.01304974679576]
本稿では,非専門職を支援するために,大規模言語モデルの基礎の上に構築された新しいモデルを紹介し,オンラインユーザ談話に対する心理的介入を提供する。
様々な専門知識を持つ10人の専門的心理学的カウンセラーによる総合的研究を行い,システムの評価を行った。
以上の結果から,本システムは患者の問題を相対的精度で分析し,プロレベルの方策を推奨できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-29T10:20:53Z) - Psy-LLM: Scaling up Global Mental Health Psychological Services with
AI-based Large Language Models [3.650517404744655]
Psy-LLMフレームワークは、大規模言語モデルを利用したAIベースのツールである。
我々のフレームワークは、トレーニング済みのLLMと心理学者や広範囲にクロールされた心理学記事の現実のプロフェッショナルQ&Aを組み合わせる。
医療専門家のためのフロントエンドツールとして機能し、即時対応とマインドフルネス活動を提供して患者のストレスを軽減する。
論文 参考訳(メタデータ) (2023-07-22T06:21:41Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Behavior quantification as the missing link between fields: Tools for
digital psychiatry and their role in the future of neurobiology [0.0]
現在の技術は、行動特性を改善するためのエキサイティングな機会です。
携帯電話のGPSやスマートウォッチの加速度計などの受動的センサーストリームを連続的に収集する新機能は、新しい疑問の道を開く。
理論上、現在の技術で捉えられるものには大きな可能性があるが、それ自体は大きな計算課題である。
論文 参考訳(メタデータ) (2023-05-24T17:45:10Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
直観心理学は、観察可能な行動を駆動する隠された精神変数を推論する能力です。
他のエージェントを推論する機械エージェントに対する近年の関心にもかかわらず、そのようなエージェントが人間の推論を駆動するコア心理学の原則を学ぶか保持するかは明らかではない。
本稿では,プロシージャが生成する3dアニメーション,エージェントを4つのシナリオで構成したベンチマークを提案する。
論文 参考訳(メタデータ) (2021-02-24T14:58:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。