論文の概要: An Overview of MLCommons Cloud Mask Benchmark: Related Research and Data
- arxiv url: http://arxiv.org/abs/2312.04799v1
- Date: Fri, 8 Dec 2023 02:25:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-11 16:22:32.126285
- Title: An Overview of MLCommons Cloud Mask Benchmark: Related Research and Data
- Title(参考訳): mlcommons cloud maskベンチマークの概要:関連研究とデータ
- Authors: Gregor von Laszewski and Ruochen Gu
- Abstract要約: 我々は、現在MLCommons Science Working Groupで実施されている研究とベンチマークに焦点をあてて、クラウドマスキングにおける研究活動のいくつかを要約する。
この概要は、他の人がMLCommons Cloud Mask Benchmarkに関連するアクティビティに着手し、協力しやすくなることを期待して作成されます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cloud masking is a crucial task that is well-motivated for meteorology and
its applications in environmental and atmospheric sciences. Its goal is, given
satellite images, to accurately generate cloud masks that identify each pixel
in image to contain either cloud or clear sky. In this paper, we summarize some
of the ongoing research activities in cloud masking, with a focus on the
research and benchmark currently conducted in MLCommons Science Working Group.
This overview is produced with the hope that others will have an easier time
getting started and collaborate on the activities related to MLCommons Cloud
Mask Benchmark.
- Abstract(参考訳): 雲のマスキングは気象学とその環境・大気科学への応用に好意的な重要な課題である。
その目標は、衛星画像によって、雲か透明な空のいずれかを含む画像の各ピクセルを識別するクラウドマスクを正確に生成することだ。
本稿では,現在MLCommons Science Working Groupで実施されている研究とベンチマークを中心に,クラウドマスキングにおける研究活動について要約する。
この概要は、他の人がMLCommons Cloud Mask Benchmarkに関連するアクティビティに着手し、協力しやすくなることを期待して作成されます。
関連論文リスト
- Masked Image Modeling: A Survey [73.21154550957898]
マスク付き画像モデリングは、コンピュータビジョンにおける強力な自己教師付き学習技術として登場した。
我々は近年,分類学を構築し,最も顕著な論文をレビューしている。
我々は,最も人気のあるデータセット上で,様々なマスク付き画像モデリング手法の性能評価結果を集約する。
論文 参考訳(メタデータ) (2024-08-13T07:27:02Z) - High-Resolution Cloud Detection Network [4.717213036330225]
本稿では,高分解能クラウド検出ネットワーク(HR-cloud-Net)を紹介する。
HR-cloud-Netは高分解能表現モジュール、レイヤーワイド機能融合モジュール、多分解能ピラミッドプールモジュールを統合している。
ノイズの多い拡張画像に基づいて訓練された学生ビューを教師ビューで教師が通常の画像を処理するという,新しいアプローチが導入された。
論文 参考訳(メタデータ) (2024-07-10T04:54:03Z) - CLiSA: A Hierarchical Hybrid Transformer Model using Orthogonal Cross
Attention for Satellite Image Cloud Segmentation [5.178465447325005]
ディープラーニングアルゴリズムは画像セグメンテーション問題を解決するための有望なアプローチとして登場してきた。
本稿では,Lipschitz Stable Attention NetworkによるCLiSA - Cloudセグメンテーションという,効果的なクラウドマスク生成のためのディープラーニングモデルを提案する。
Landsat-8, Sentinel-2, Cartosat-2sを含む複数の衛星画像データセットの質的および定量的な結果を示す。
論文 参考訳(メタデータ) (2023-11-29T09:31:31Z) - Masked Spatio-Temporal Structure Prediction for Self-supervised Learning
on Point Cloud Videos [75.9251839023226]
人間のアノテーションを使わずにポイントクラウドビデオの構造をキャプチャするMasked-temporal Structure Prediction (MaST-Pre)法を提案する。
MaST-Preは,2つの自己指導型学習タスクから構成される。まず,マスク付きポイントチューブを再構築することにより,ポイントクラウドビデオの出現情報を捉えることができる。
第2に、動作を学習するために、点管内の点数の変化を推定する時間的濃度差予測タスクを提案する。
論文 参考訳(メタデータ) (2023-08-18T02:12:54Z) - MaskSearch: Querying Image Masks at Scale [60.82746984506577]
MaskSearchは、クエリ結果の正確性を確保しながら、イメージマスクのデータベース上でクエリを高速化するシステムである。
試行錯誤実験の結果,圧縮データサイズの約5%のインデックスを用いたMaskSearchは,最大2桁のクエリを高速化することがわかった。
論文 参考訳(メタデータ) (2023-05-03T18:28:14Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
マスケ画像モデリングは視覚データに対する有望な自己教師型学習手法である。
本稿では,Gumbel-Softmax を用いて,対向学習マスク生成装置とマスク誘導画像モデリングプロセスとを相互接続するフレームワーク AutoMAE を提案する。
実験の結果,AutoMAEは,標準の自己監督型ベンチマークや下流タスクに対して,効果的な事前学習モデルを提供することがわかった。
論文 参考訳(メタデータ) (2023-03-12T05:28:55Z) - MM811 Project Report: Cloud Detection and Removal in Satellite Images [0.0]
我々は,アテンションGANを用いて衛星画像から雲を除去することを目的としている。
従来のGANとオートエンコーダを用いて得られた結果を再現して比較した。
このプロジェクトの結果は、クラウドフリーの衛星画像を必要とするアプリケーションの開発に利用できる。
論文 参考訳(メタデータ) (2022-12-21T21:14:35Z) - Unsupervised Point Cloud Representation Learning with Deep Neural
Networks: A Survey [104.71816962689296]
大規模クラウドラベリングの制約により,教師なしのポイントクラウド表現学習が注目されている。
本稿では、ディープニューラルネットワークを用いた教師なしポイントクラウド表現学習の総合的なレビューを提供する。
論文 参考訳(メタデータ) (2022-02-28T07:46:05Z) - Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face
Presentation Attack Detection [103.7264459186552]
顔認識システムには、顔提示攻撃検出(PAD)が不可欠である。
ほとんどの既存の3DマスクPADベンチマークにはいくつかの欠点があります。
現実世界のアプリケーションとのギャップを埋めるために、大規模なハイファイアリティマスクデータセットを紹介します。
論文 参考訳(メタデータ) (2021-04-13T12:48:38Z) - Cloud detection machine learning algorithms for PROBA-V [6.950862982117125]
本論文で提示されるアルゴリズムの目的は,ピクセル当たりのクラウドフラグを正確に提示するクラウドを検出することである。
提案手法の有効性を,多数の実proba-v画像を用いて検証した。
論文 参考訳(メタデータ) (2020-12-09T18:23:59Z) - Generating the Cloud Motion Winds Field from Satellite Cloud Imagery
Using Deep Learning Approach [1.8655840060559172]
データ駆動型ディープラーニングアプローチに基づくクラウドモーションウィンドアルゴリズムについて検討する。
深層学習モデルを用いて、運動特徴表現を自動的に学習し、雲の風の場を直接出力する。
我々はまた、従来のアルゴリズムでは達成できない固定領域における雲の動きの風場を予測するために、単一の雲画像を使用することも試みている。
論文 参考訳(メタデータ) (2020-10-03T05:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。