論文の概要: PathFinder: Guided Search over Multi-Step Reasoning Paths
- arxiv url: http://arxiv.org/abs/2312.05180v2
- Date: Tue, 12 Dec 2023 16:06:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 12:41:01.441017
- Title: PathFinder: Guided Search over Multi-Step Reasoning Paths
- Title(参考訳): PathFinder:マルチステップ推論パスに関するガイド付き検索
- Authors: Olga Golovneva, Sean O'Brien, Ramakanth Pasunuru, Tianlu Wang, Luke
Zettlemoyer, Maryam Fazel-Zarandi, Asli Celikyilmaz
- Abstract要約: 木探索に基づく推論経路生成手法であるPathFinderを提案する。
動的デコードの統合により、多様な分岐とマルチホップ推論を強化する。
我々のモデルは、大きな分岐因子を持つビームサーチに類似した複雑さを反映して、よく、長く、目に見えない推論連鎖を一般化する。
- 参考スコア(独自算出の注目度): 80.56102301441899
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With recent advancements in large language models, methods like
chain-of-thought prompting to elicit reasoning chains have been shown to
improve results on reasoning tasks. However, tasks that require multiple steps
of reasoning still pose significant challenges to state-of-the-art models.
Drawing inspiration from the beam search algorithm, we propose PathFinder, a
tree-search-based reasoning path generation approach. It enhances diverse
branching and multi-hop reasoning through the integration of dynamic decoding,
enabled by varying sampling methods and parameters. Using constrained
reasoning, PathFinder integrates novel quality constraints, pruning, and
exploration methods to enhance the efficiency and the quality of generation.
Moreover, it includes scoring and ranking features to improve candidate
selection. Our approach outperforms competitive baselines on three complex
arithmetic and commonsense reasoning tasks by 6% on average. Our model
generalizes well to longer, unseen reasoning chains, reflecting similar
complexities to beam search with large branching factors.
- Abstract(参考訳): 近年の大規模言語モデルの発展に伴い、思考の連鎖のような手法が推論の連鎖を誘発し、推論タスクの結果を改善することが示されている。
しかし、複数の推論ステップを必要とするタスクは、まだ最先端のモデルに重大な課題をもたらしている。
ビーム探索アルゴリズムからインスピレーションを得て,木探索に基づく推論経路生成手法であるPathFinderを提案する。
様々なサンプリング方法とパラメータによって実現される動的デコードの統合により、多様な分岐とマルチホップ推論が強化される。
PathFinderは制約付き推論を使用して、新しい品質制約、刈り取り、探索手法を統合して、生成の効率性と品質を向上させる。
さらに、候補選択を改善するためのスコアとランキング機能も備えている。
提案手法は,3つの複雑な算術および常識推論タスクの競合ベースラインを平均6%向上させる。
モデルでは, 長い未知の推論連鎖によく一般化し, 大きな分岐因子を持つビーム探索に類似した複雑さを反映している。
関連論文リスト
- Policy Guided Tree Search for Enhanced LLM Reasoning [3.090041654375235]
Policy-Guided Tree Search (PGTS)は、強化学習と構造化木探索を組み合わせて推論経路を効率的にナビゲートするフレームワークである。
私たちの重要なイノベーションは、手作業や徹底的な検索の必要性をなくし、拡大、分岐、追跡、探索の終了を動的に決定する、学習されたポリシーです。
論文 参考訳(メタデータ) (2025-02-04T22:08:20Z) - Semantic Exploration with Adaptive Gating for Efficient Problem Solving with Language Models [8.295475330195993]
本稿では,セマンティック探索を適応ゲーティング(SEAG)で提案し,意味論的に同一の経路を探索する。
SEAGは計算コストの31%しか必要とせず、平均4.3%の精度を著しく向上させる。
実験の結果,SEAGの精度は平均4.3%向上し,計算コストは31%に過ぎなかった。
論文 参考訳(メタデータ) (2025-01-10T07:02:43Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
多段階多モーダル推論タスクは、大規模言語モデル(MLLM)に重大な課題をもたらす
本稿では,MLLMの推論能力の向上を目的とした汎用フレームワークAR-MCTSを提案する。
我々は,AR-MCTSがサンプリングの多様性と精度を最適化し,信頼性の高いマルチモーダル推論を実現することを示す。
論文 参考訳(メタデータ) (2024-12-19T13:25:39Z) - Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1のような推論アプローチは困難で、研究者はこのオープンな研究領域を前進させようとさまざまな試みを行ってきた。
本稿では,報酬誘導木探索アルゴリズムを用いて,LLMの推論能力を高めるための予備的な検討を行う。
論文 参考訳(メタデータ) (2024-11-18T16:15:17Z) - Reasoning Paths Optimization: Learning to Reason and Explore From Diverse Paths [69.39559168050923]
本稿では,多様な経路から学習の推論と探索を可能にするReasoning Paths Optimization (RPO)を紹介する。
提案手法は,各推論ステップにおいて好意的な分岐を奨励し,好ましくない分岐を罰し,モデル全体の問題解決性能を高める。
我々は,数語問題や理科ベースの試験問題など,多段階の推論タスクに焦点をあてる。
論文 参考訳(メタデータ) (2024-10-07T06:37:25Z) - What Matters in Hierarchical Search for Combinatorial Reasoning Problems? [0.5007502976837217]
近年の取り組みでは,階層的な高次探索戦略を取り入れたサブゴアル手法による計画の強化が試みられている。
有望ではあるが、従来の低レベルのプランナに対する彼らのパフォーマンスは一貫性がなく、アプリケーションコンテキストに関する疑問を提起している。
難解な値関数、複雑なアクション空間、環境におけるデッドエンドの存在、あるいは多様な専門家から収集されたデータなど、ハイレベル検索の利点を活用する上で重要な属性を同定する。
論文 参考訳(メタデータ) (2024-06-05T15:14:58Z) - Tree-of-Mixed-Thought: Combining Fast and Slow Thinking for Multi-hop
Visual Reasoning [16.495754104540605]
大規模言語モデル(LLM)は、視覚的推論のような複雑な推論タスクのためのコードライクな計画を生成することができる。
ワンストップ推論 (fast) とツリー・オブ・シント (slow) を統合した階層型計画探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-18T16:21:40Z) - Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement [50.62461749446111]
Self-Polish(SP)は、与えられた問題を徐々に洗練し、より理解しやすく解けるように誘導することによって、モデルの推論を促進する新しい方法である。
SPは、CoTのような答え/推論サイドの他のすべてのプロンプトメソッドであり、最先端の技術とのシームレスな統合を可能にし、さらなる改善を可能にします。
論文 参考訳(メタデータ) (2023-05-23T19:58:30Z) - Complexity-Based Prompting for Multi-Step Reasoning [72.0057198610614]
大規模言語モデルに対して,多段階推論を行うための課題について検討する。
中心的な疑問は、どの推論例が最も効果的なプロンプトを作るかである。
多段階推論のためのシンプルで効果的な例選択方式である複雑性ベースのプロンプトを提案する。
論文 参考訳(メタデータ) (2022-10-03T05:33:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。