論文の概要: PathFinder: Guided Search over Multi-Step Reasoning Paths
- arxiv url: http://arxiv.org/abs/2312.05180v2
- Date: Tue, 12 Dec 2023 16:06:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 12:41:01.441017
- Title: PathFinder: Guided Search over Multi-Step Reasoning Paths
- Title(参考訳): PathFinder:マルチステップ推論パスに関するガイド付き検索
- Authors: Olga Golovneva, Sean O'Brien, Ramakanth Pasunuru, Tianlu Wang, Luke
Zettlemoyer, Maryam Fazel-Zarandi, Asli Celikyilmaz
- Abstract要約: 木探索に基づく推論経路生成手法であるPathFinderを提案する。
動的デコードの統合により、多様な分岐とマルチホップ推論を強化する。
我々のモデルは、大きな分岐因子を持つビームサーチに類似した複雑さを反映して、よく、長く、目に見えない推論連鎖を一般化する。
- 参考スコア(独自算出の注目度): 80.56102301441899
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With recent advancements in large language models, methods like
chain-of-thought prompting to elicit reasoning chains have been shown to
improve results on reasoning tasks. However, tasks that require multiple steps
of reasoning still pose significant challenges to state-of-the-art models.
Drawing inspiration from the beam search algorithm, we propose PathFinder, a
tree-search-based reasoning path generation approach. It enhances diverse
branching and multi-hop reasoning through the integration of dynamic decoding,
enabled by varying sampling methods and parameters. Using constrained
reasoning, PathFinder integrates novel quality constraints, pruning, and
exploration methods to enhance the efficiency and the quality of generation.
Moreover, it includes scoring and ranking features to improve candidate
selection. Our approach outperforms competitive baselines on three complex
arithmetic and commonsense reasoning tasks by 6% on average. Our model
generalizes well to longer, unseen reasoning chains, reflecting similar
complexities to beam search with large branching factors.
- Abstract(参考訳): 近年の大規模言語モデルの発展に伴い、思考の連鎖のような手法が推論の連鎖を誘発し、推論タスクの結果を改善することが示されている。
しかし、複数の推論ステップを必要とするタスクは、まだ最先端のモデルに重大な課題をもたらしている。
ビーム探索アルゴリズムからインスピレーションを得て,木探索に基づく推論経路生成手法であるPathFinderを提案する。
様々なサンプリング方法とパラメータによって実現される動的デコードの統合により、多様な分岐とマルチホップ推論が強化される。
PathFinderは制約付き推論を使用して、新しい品質制約、刈り取り、探索手法を統合して、生成の効率性と品質を向上させる。
さらに、候補選択を改善するためのスコアとランキング機能も備えている。
提案手法は,3つの複雑な算術および常識推論タスクの競合ベースラインを平均6%向上させる。
モデルでは, 長い未知の推論連鎖によく一般化し, 大きな分岐因子を持つビーム探索に類似した複雑さを反映している。
関連論文リスト
- Technical Report: Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1のような推論アプローチは困難で、研究者はこのオープンな研究領域を前進させようとさまざまな試みを行ってきた。
本稿では,報酬誘導木探索アルゴリズムを用いて,LLMの推論能力を高めるための予備的な検討を行う。
論文 参考訳(メタデータ) (2024-11-18T16:15:17Z) - Reasoning Paths Optimization: Learning to Reason and Explore From Diverse Paths [69.39559168050923]
本稿では,多様な経路から学習の推論と探索を可能にするReasoning Paths Optimization (RPO)を紹介する。
提案手法は,各推論ステップにおいて好意的な分岐を奨励し,好ましくない分岐を罰し,モデル全体の問題解決性能を高める。
我々は,数語問題や理科ベースの試験問題など,多段階の推論タスクに焦点をあてる。
論文 参考訳(メタデータ) (2024-10-07T06:37:25Z) - Guided Stream of Search: Learning to Better Search with Language Models via Optimal Path Guidance [17.28280896937486]
言語モデルの探索と計画能力を高めるために最適な解をいかに活用するかを示す。
提案手法は,単純な数学的推論タスクであるCountdownにおける言語モデルの探索と計画能力を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-03T21:07:59Z) - What Matters in Hierarchical Search for Combinatorial Reasoning Problems? [0.0]
近年の取り組みでは,階層的な高次探索戦略を取り入れたサブゴアル手法による計画の強化が試みられている。
有望ではあるが、従来の低レベルのプランナに対する彼らのパフォーマンスは一貫性がなく、アプリケーションコンテキストに関する疑問を提起している。
難解な値関数、複雑なアクション空間、環境におけるデッドエンドの存在、あるいは多様な専門家から収集されたデータなど、ハイレベル検索の利点を活用する上で重要な属性を同定する。
論文 参考訳(メタデータ) (2024-06-05T15:14:58Z) - FiDeLiS: Faithful Reasoning in Large Language Model for Knowledge Graph Question Answering [46.41364317172677]
本稿では,知識グラフ質問応答を強化する検索拡張推論手法FiDeLiSを提案する。
FiDeLiSはキーワード付き検索機構を使用し、KGのベクトルベースインデックスから関連エンティティと関係をフェッチする。
我々のアプローチの特徴は、推論経路の選択を最適化するために、自然言語とビームサーチをブレンドすることである。
論文 参考訳(メタデータ) (2024-05-22T17:56:53Z) - Tree-of-Mixed-Thought: Combining Fast and Slow Thinking for Multi-hop
Visual Reasoning [16.495754104540605]
大規模言語モデル(LLM)は、視覚的推論のような複雑な推論タスクのためのコードライクな計画を生成することができる。
ワンストップ推論 (fast) とツリー・オブ・シント (slow) を統合した階層型計画探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-18T16:21:40Z) - Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement [50.62461749446111]
Self-Polish(SP)は、与えられた問題を徐々に洗練し、より理解しやすく解けるように誘導することによって、モデルの推論を促進する新しい方法である。
SPは、CoTのような答え/推論サイドの他のすべてのプロンプトメソッドであり、最先端の技術とのシームレスな統合を可能にし、さらなる改善を可能にします。
論文 参考訳(メタデータ) (2023-05-23T19:58:30Z) - Learning to Reason With Relational Abstractions [65.89553417442049]
関係抽象化の考え方を用いて,言語モデルにおいてより強力な推論能力を構築する方法について検討する。
このようなシーケンスをプロンプトとして提供したモデルでは,タスクの精度が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2022-10-06T00:27:50Z) - Complexity-Based Prompting for Multi-Step Reasoning [72.0057198610614]
大規模言語モデルに対して,多段階推論を行うための課題について検討する。
中心的な疑問は、どの推論例が最も効果的なプロンプトを作るかである。
多段階推論のためのシンプルで効果的な例選択方式である複雑性ベースのプロンプトを提案する。
論文 参考訳(メタデータ) (2022-10-03T05:33:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。