Target to Source: Guidance-Based Diffusion Model for Test-Time
Adaptation
- URL: http://arxiv.org/abs/2312.05274v1
- Date: Fri, 8 Dec 2023 02:31:36 GMT
- Title: Target to Source: Guidance-Based Diffusion Model for Test-Time
Adaptation
- Authors: Kaiyu Song, Hanjiang Lai
- Abstract summary: We propose a novel guidance-based diffusion-driven adaptation (GDDA) to overcome the data shift.
GDDA significantly performs better than the state-of-the-art baselines.
- Score: 8.695439655048634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most recent works of test-time adaptation (TTA) aim to alleviate domain shift
problems by re-training source classifiers in each domain. On the other hand,
the emergence of the diffusion model provides another solution to TTA, which
directly maps the test data from the target domain to the source domain based
on a diffusion model pre-trained in the source domain. The source classifier
does not need to be fine-tuned. However, 1) the semantic information loss from
test data to the source domain and 2) the model shift between the source
classifier and diffusion model would prevent the diffusion model from mapping
the test data back to the source domain correctly. In this paper, we propose a
novel guidance-based diffusion-driven adaptation (GDDA) to overcome the data
shift and let the diffusion model find a better way to go back to the source.
Concretely, we first propose detail and global guidance to better keep the
common semantics of the test and source data. The two guidance include a
contrastive loss and mean squared error to alleviate the information loss by
fully exploring the diffusion model and the test data. Meanwhile, we propose a
classifier-aware guidance to reduce the bias caused by the model shift, which
can incorporate the source classifier's information into the generation process
of the diffusion model. Extensive experiments on three image datasets with
three classifier backbones demonstrate that GDDA significantly performs better
than the state-of-the-art baselines. On CIFAR-10C, CIFAR-100C, and ImageNetC,
GDDA achieves 11.54\%, 19.05\%, and 11.63\% average accuracy improvements,
respectively. GDDA even achieves equal performance compared with methods of
re-training classifiers. The code is available in the supplementary material.
Related papers
- Generalizable Origin Identification for Text-Guided Image-to-Image Diffusion Models [39.234894330025114]
Text-guided image-to-image diffusion models excel in translating images based on textual prompts.
This motivates us to introduce the task of origin IDentification for text-guided Image-to-image Diffusion models (ID$2$)
A straightforward solution to ID$2$ involves training a specialized deep embedding model to extract and compare features from both query and reference images.
arXiv Detail & Related papers (2025-01-04T20:34:53Z) - Improving Consistency in Diffusion Models for Image Super-Resolution [28.945663118445037]
We observe two kinds of inconsistencies in diffusion-based methods.
We introduce ConsisSR to handle both semantic and training-inference consistencies.
Our method demonstrates state-of-the-art performance among existing diffusion models.
arXiv Detail & Related papers (2024-10-17T17:41:52Z) - Everything to the Synthetic: Diffusion-driven Test-time Adaptation via Synthetic-Domain Alignment [76.44483062571611]
Test-time adaptation (TTA) aims to enhance the performance of source-domain pretrained models when tested on unknown shifted target domains.
Traditional TTA methods primarily adapt model weights based on target data streams, making model performance sensitive to the amount and order of target data.
Recent diffusion-driven TTA methods have demonstrated strong performance by using an unconditional diffusion model.
arXiv Detail & Related papers (2024-06-06T17:39:09Z) - Source-Free Domain Adaptation with Diffusion-Guided Source Data Generation [6.087274577167399]
This paper introduces a novel approach to leverage the generalizability of Diffusion Models for Source-Free Domain Adaptation (DM-SFDA)
Our proposed DMSFDA method involves fine-tuning a pre-trained text-to-image diffusion model to generate source domain images.
We validate our approach through comprehensive experiments across a range of datasets, including Office-31, Office-Home, and VisDA.
arXiv Detail & Related papers (2024-02-07T14:56:13Z) - Forgery-aware Adaptive Transformer for Generalizable Synthetic Image
Detection [106.39544368711427]
We study the problem of generalizable synthetic image detection, aiming to detect forgery images from diverse generative methods.
We present a novel forgery-aware adaptive transformer approach, namely FatFormer.
Our approach tuned on 4-class ProGAN data attains an average of 98% accuracy to unseen GANs, and surprisingly generalizes to unseen diffusion models with 95% accuracy.
arXiv Detail & Related papers (2023-12-27T17:36:32Z) - Exploiting Diffusion Prior for Generalizable Dense Prediction [85.4563592053464]
Recent advanced Text-to-Image (T2I) diffusion models are sometimes too imaginative for existing off-the-shelf dense predictors to estimate.
We introduce DMP, a pipeline utilizing pre-trained T2I models as a prior for dense prediction tasks.
Despite limited-domain training data, the approach yields faithful estimations for arbitrary images, surpassing existing state-of-the-art algorithms.
arXiv Detail & Related papers (2023-11-30T18:59:44Z) - Turn Down the Noise: Leveraging Diffusion Models for Test-time
Adaptation via Pseudo-label Ensembling [2.5437028043490084]
The goal of test-time adaptation is to adapt a source-pretrained model to a continuously changing target domain without relying on any source data.
We introduce an approach that leverages a pre-trained diffusion model to project the target domain images closer to the source domain.
arXiv Detail & Related papers (2023-11-29T20:35:32Z) - ADIR: Adaptive Diffusion for Image Reconstruction [46.838084286784195]
We propose a conditional sampling scheme that exploits the prior learned by diffusion models.
We then combine it with a novel approach for adapting pretrained diffusion denoising networks to their input.
We show that our proposed adaptive diffusion for image reconstruction' approach achieves a significant improvement in the super-resolution, deblurring, and text-based editing tasks.
arXiv Detail & Related papers (2022-12-06T18:39:58Z) - ProSFDA: Prompt Learning based Source-free Domain Adaptation for Medical
Image Segmentation [21.079667938055668]
We propose a textbfPrompt learning based textbfSFDA (textbfProSFDA) method for medical image segmentation.
Our results indicate that the proposed ProSFDA outperforms substantially other SFDA methods and is even comparable to UDA methods.
arXiv Detail & Related papers (2022-11-21T14:57:04Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Diffusion Visual Counterfactual Explanations [51.077318228247925]
Visual Counterfactual Explanations (VCEs) are an important tool to understand the decisions of an image.
Current approaches for the generation of VCEs are restricted to adversarially robust models and often contain non-realistic artefacts.
In this paper, we overcome this by generating Visual Diffusion Counterfactual Explanations (DVCEs) for arbitrary ImageNet classifiers.
arXiv Detail & Related papers (2022-10-21T09:35:47Z) - Back to the Source: Diffusion-Driven Test-Time Adaptation [77.4229736436935]
Test-time adaptation harnesses test inputs to improve accuracy of a model trained on source data when tested on shifted target data.
We instead update the target data, by projecting all test inputs toward the source domain with a generative diffusion model.
arXiv Detail & Related papers (2022-07-07T17:14:10Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic
Segmentation [97.74059510314554]
Unsupervised domain adaptation (UDA) for semantic segmentation aims to adapt a segmentation model trained on the labeled source domain to the unlabeled target domain.
Existing methods try to learn domain invariant features while suffering from large domain gaps.
We propose a novel Dual Soft-Paste (DSP) method in this paper.
arXiv Detail & Related papers (2021-07-20T16:22:40Z) - Distill and Fine-tune: Effective Adaptation from a Black-box Source
Model [138.12678159620248]
Unsupervised domain adaptation (UDA) aims to transfer knowledge in previous related labeled datasets (source) to a new unlabeled dataset (target)
We propose a novel two-step adaptation framework called Distill and Fine-tune (Dis-tune)
arXiv Detail & Related papers (2021-04-04T05:29:05Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
This paper proposes a new paradigm that dynamically removes redundant filters by embedding the manifold information of all instances into the space of pruned networks.
The effectiveness of the proposed method is verified on several benchmarks, which shows better performance in terms of both accuracy and computational cost.
arXiv Detail & Related papers (2021-03-10T03:59:03Z) - Un-Mix: Rethinking Image Mixtures for Unsupervised Visual Representation
Learning [108.999497144296]
Recently advanced unsupervised learning approaches use the siamese-like framework to compare two "views" from the same image for learning representations.
This work aims to involve the distance concept on label space in the unsupervised learning and let the model be aware of the soft degree of similarity between positive or negative pairs.
Despite its conceptual simplicity, we show empirically that with the solution -- Unsupervised image mixtures (Un-Mix), we can learn subtler, more robust and generalized representations from the transformed input and corresponding new label space.
arXiv Detail & Related papers (2020-03-11T17:59:04Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.