Source-Free Domain Adaptation with Diffusion-Guided Source Data Generation
- URL: http://arxiv.org/abs/2402.04929v3
- Date: Wed, 26 Jun 2024 20:57:15 GMT
- Title: Source-Free Domain Adaptation with Diffusion-Guided Source Data Generation
- Authors: Shivang Chopra, Suraj Kothawade, Houda Aynaou, Aman Chadha,
- Abstract summary: This paper introduces a novel approach to leverage the generalizability of Diffusion Models for Source-Free Domain Adaptation (DM-SFDA)
Our proposed DMSFDA method involves fine-tuning a pre-trained text-to-image diffusion model to generate source domain images.
We validate our approach through comprehensive experiments across a range of datasets, including Office-31, Office-Home, and VisDA.
- Score: 6.087274577167399
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel approach to leverage the generalizability of Diffusion Models for Source-Free Domain Adaptation (DM-SFDA). Our proposed DMSFDA method involves fine-tuning a pre-trained text-to-image diffusion model to generate source domain images using features from the target images to guide the diffusion process. Specifically, the pre-trained diffusion model is fine-tuned to generate source samples that minimize entropy and maximize confidence for the pre-trained source model. We then use a diffusion model-based image mixup strategy to bridge the domain gap between the source and target domains. We validate our approach through comprehensive experiments across a range of datasets, including Office-31, Office-Home, and VisDA. The results demonstrate significant improvements in SFDA performance, highlighting the potential of diffusion models in generating contextually relevant, domain-specific images.
Related papers
- FDS: Feedback-guided Domain Synthesis with Multi-Source Conditional Diffusion Models for Domain Generalization [19.0284321951354]
Domain Generalization techniques aim to enhance model robustness by simulating novel data distributions during training.
We propose FDS, Feedback-guided Domain Synthesis, a novel strategy that employs diffusion models to synthesize novel, pseudo-domains.
Our evaluations demonstrate that this methodology sets new benchmarks in domain generalization performance across a range of challenging datasets.
arXiv Detail & Related papers (2024-07-04T02:45:29Z) - Target to Source: Guidance-Based Diffusion Model for Test-Time
Adaptation [8.695439655048634]
We propose a novel guidance-based diffusion-driven adaptation (GDDA) to overcome the data shift.
GDDA significantly performs better than the state-of-the-art baselines.
arXiv Detail & Related papers (2023-12-08T02:31:36Z) - Discovery and Expansion of New Domains within Diffusion Models [41.25905891327446]
We study the generalization properties of diffusion models in a fewshot setup.
We introduce a novel tuning-free paradigm to synthesize the target out-of-domain data.
arXiv Detail & Related papers (2023-10-13T16:07:31Z) - Transcending Domains through Text-to-Image Diffusion: A Source-Free
Approach to Domain Adaptation [6.649910168731417]
Domain Adaptation (DA) is a method for enhancing a model's performance on a target domain with inadequate annotated data.
We propose a novel framework for SFDA that generates source data using a text-to-image diffusion model trained on the target domain samples.
arXiv Detail & Related papers (2023-10-02T23:38:17Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - DomainStudio: Fine-Tuning Diffusion Models for Domain-Driven Image
Generation using Limited Data [20.998032566820907]
This paper proposes a novel DomainStudio approach to adapt DDPMs pre-trained on large-scale source datasets to target domains using limited data.
It is designed to keep the diversity of subjects provided by source domains and get high-quality and diverse adapted samples in target domains.
arXiv Detail & Related papers (2023-06-25T07:40:39Z) - Real-World Image Variation by Aligning Diffusion Inversion Chain [53.772004619296794]
A domain gap exists between generated images and real-world images, which poses a challenge in generating high-quality variations of real-world images.
We propose a novel inference pipeline called Real-world Image Variation by ALignment (RIVAL)
Our pipeline enhances the generation quality of image variations by aligning the image generation process to the source image's inversion chain.
arXiv Detail & Related papers (2023-05-30T04:09:47Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
We present SinDiffusion, leveraging denoising diffusion models to capture internal distribution of patches from a single natural image.
It is based on two core designs. First, SinDiffusion is trained with a single model at a single scale instead of multiple models with progressive growing of scales.
Second, we identify that a patch-level receptive field of the diffusion network is crucial and effective for capturing the image's patch statistics.
arXiv Detail & Related papers (2022-11-22T18:00:03Z) - Unifying Diffusion Models' Latent Space, with Applications to
CycleDiffusion and Guidance [95.12230117950232]
We show that a common latent space emerges from two diffusion models trained independently on related domains.
Applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors.
arXiv Detail & Related papers (2022-10-11T15:53:52Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - A Novel Mix-normalization Method for Generalizable Multi-source Person
Re-identification [49.548815417844786]
Person re-identification (Re-ID) has achieved great success in the supervised scenario.
It is difficult to directly transfer the supervised model to arbitrary unseen domains due to the model overfitting to the seen source domains.
We propose MixNorm, which consists of domain-aware mix-normalization (DMN) and domain-ware center regularization (DCR)
arXiv Detail & Related papers (2022-01-24T18:09:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.