Multi-view Inversion for 3D-aware Generative Adversarial Networks
- URL: http://arxiv.org/abs/2312.05330v1
- Date: Fri, 8 Dec 2023 19:28:40 GMT
- Title: Multi-view Inversion for 3D-aware Generative Adversarial Networks
- Authors: Florian Barthel, Anna Hilsmann, Peter Eisert
- Abstract summary: Current 3D GAN inversion methods for human heads typically use only one single frontal image to reconstruct the whole 3D head model.
This leaves out meaningful information when multi-view data or dynamic videos are available.
Our method builds on existing state-of-the-art 3D GAN inversion techniques to allow for consistent and simultaneous inversion of multiple views of the same subject.
- Score: 3.95944314850151
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Current 3D GAN inversion methods for human heads typically use only one
single frontal image to reconstruct the whole 3D head model. This leaves out
meaningful information when multi-view data or dynamic videos are available.
Our method builds on existing state-of-the-art 3D GAN inversion techniques to
allow for consistent and simultaneous inversion of multiple views of the same
subject. We employ a multi-latent extension to handle inconsistencies present
in dynamic face videos to re-synthesize consistent 3D representations from the
sequence. As our method uses additional information about the target subject,
we observe significant enhancements in both geometric accuracy and image
quality, particularly when rendering from wide viewing angles. Moreover, we
demonstrate the editability of our inverted 3D renderings, which distinguishes
them from NeRF-based scene reconstructions.
Related papers
- Hi3D: Pursuing High-Resolution Image-to-3D Generation with Video Diffusion Models [112.2625368640425]
High-resolution Image-to-3D model (Hi3D) is a new video diffusion based paradigm that redefines a single image to multi-view images as 3D-aware sequential image generation.
Hi3D first empowers the pre-trained video diffusion model with 3D-aware prior, yielding multi-view images with low-resolution texture details.
arXiv Detail & Related papers (2024-09-11T17:58:57Z) - MVD-Fusion: Single-view 3D via Depth-consistent Multi-view Generation [54.27399121779011]
We present MVD-Fusion: a method for single-view 3D inference via generative modeling of multi-view-consistent RGB-D images.
We show that our approach can yield more accurate synthesis compared to recent state-of-the-art, including distillation-based 3D inference and prior multi-view generation methods.
arXiv Detail & Related papers (2024-04-04T17:59:57Z) - 3D-SceneDreamer: Text-Driven 3D-Consistent Scene Generation [51.64796781728106]
We propose a generative refinement network to synthesize new contents with higher quality by exploiting the natural image prior to 2D diffusion model and the global 3D information of the current scene.
Our approach supports wide variety of scene generation and arbitrary camera trajectories with improved visual quality and 3D consistency.
arXiv Detail & Related papers (2024-03-14T14:31:22Z) - Wonder3D: Single Image to 3D using Cross-Domain Diffusion [105.16622018766236]
Wonder3D is a novel method for efficiently generating high-fidelity textured meshes from single-view images.
To holistically improve the quality, consistency, and efficiency of image-to-3D tasks, we propose a cross-domain diffusion model.
arXiv Detail & Related papers (2023-10-23T15:02:23Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
We present a novel approach to the generation of static and articulated 3D assets that has a 3D autodecoder at its core.
The 3D autodecoder framework embeds properties learned from the target dataset in the latent space.
We then identify the appropriate intermediate volumetric latent space, and introduce robust normalization and de-normalization operations.
arXiv Detail & Related papers (2023-07-07T17:59:14Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views.
Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
arXiv Detail & Related papers (2022-11-28T18:59:52Z) - 3D GAN Inversion with Pose Optimization [26.140281977885376]
We introduce a generalizable 3D GAN inversion method that infers camera viewpoint and latent code simultaneously to enable multi-view consistent semantic image editing.
We conduct extensive experiments on image reconstruction and editing both quantitatively and qualitatively, and further compare our results with 2D GAN-based editing.
arXiv Detail & Related papers (2022-10-13T19:06:58Z) - Multi-View Consistent Generative Adversarial Networks for 3D-aware Image
Synthesis [48.33860286920389]
3D-aware image synthesis aims to generate images of objects from multiple views by learning a 3D representation.
Existing approaches lack geometry constraints, hence usually fail to generate multi-view consistent images.
We propose Multi-View Consistent Generative Adrial Networks (MVCGAN) for high-quality 3D-aware image synthesis with geometry constraints.
arXiv Detail & Related papers (2022-04-13T11:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.