論文の概要: Triplet Edge Attention for Algorithmic Reasoning
- arxiv url: http://arxiv.org/abs/2312.05611v1
- Date: Sat, 9 Dec 2023 16:46:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-12 19:47:53.634389
- Title: Triplet Edge Attention for Algorithmic Reasoning
- Title(参考訳): アルゴリズム推論のためのトリプルトエッジアテンション
- Authors: Yeonjoon Jung and Sungsoo Ahn
- Abstract要約: 我々は、エッジ対応グラフアテンション層であるTriplet Edge Attention (TEA)と呼ばれる新しいグラフニューラルネットワーク層を導入する。
我々のアルゴリズムは、エッジベースの注意力を用いて、エッジ潜在を正確に計算し、複数のトリプルトメッセージを集約する。
- 参考スコア(独自算出の注目度): 16.130097693973845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work investigates neural algorithmic reasoning to develop neural
networks capable of learning from classical algorithms. The main challenge is
to develop graph neural networks that are expressive enough to predict the
given algorithm outputs while generalizing well to out-of-distribution data. In
this work, we introduce a new graph neural network layer called Triplet Edge
Attention (TEA), an edge-aware graph attention layer. Our algorithm works by
precisely computing edge latent, aggregating multiple triplet messages using
edge-based attention. We empirically validate our TEA layer in the CLRS
benchmark and demonstrate a $5%$ improvement on average. In particular, we
achieve a $30%$ improvement for the string algorithms compared to the
state-of-the-art model.
- Abstract(参考訳): 本研究では,古典的アルゴリズムから学習可能なニューラルネットワークを開発するためのニューラルネットワーク推論について検討する。
主な課題は、与えられたアルゴリズムの出力を予測するのに十分な表現力を持つグラフニューラルネットワークを開発することである。
本研究では,エッジ対応グラフアテンション層であるTriplet Edge Attention (TEA)と呼ばれる新しいグラフニューラルネットワーク層を導入する。
我々のアルゴリズムはエッジの潜在性を正確に計算し、エッジベースの注意力を使って複数のトリプレットメッセージを集約する。
CLRSベンチマークでTEA層を実証的に検証し、平均で5%$改善したことを実証します。
特に、最先端モデルと比較して、文字列アルゴリズムの30%$の改善を実現しています。
関連論文リスト
- LinSATNet: The Positive Linear Satisfiability Neural Networks [116.65291739666303]
本稿では,ニューラルネットワークに人気の高い正の線形満足度を導入する方法について検討する。
本稿では,古典的なシンクホーンアルゴリズムを拡張し,複数の辺分布の集合を共同で符号化する,最初の微分可能満足層を提案する。
論文 参考訳(メタデータ) (2024-07-18T22:05:21Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
グラフマッチングはコンピュータビジョンやパターン認識において一般的に用いられる技法である。
最近のデータ駆動型アプローチは、グラフマッチングの精度を著しく改善した。
データ駆動手法と従来の手法の利点を組み合わせたグラフニューラルネットワーク(GNN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-11T06:34:05Z) - Layer-wise training for self-supervised learning on graphs [0.0]
大規模グラフ上でのグラフニューラルネットワーク(GNN)のエンドツーエンドトレーニングは、いくつかのメモリと計算上の課題を示す。
本稿では,GNN層を自己教師型で学習するアルゴリズムであるレイヤワイズ正規化グラフInfomaxを提案する。
論文 参考訳(メタデータ) (2023-09-04T10:23:39Z) - Latent Space Representations of Neural Algorithmic Reasoners [15.920449080528536]
アルゴリズムの実行時にGNNによって誘導される潜伏空間の構造を詳細に解析する。
i) 分解能の喪失、(i) 類似した値の識別が困難、(ii) トレーニング中に観察された範囲外の値を扱うことができない、という2つの可能な障害モードを特定します。
これらの変更は、最先端のTriplet-GMPNNプロセッサを使用する場合、CLRS-30ベンチマークのアルゴリズムの大部分の改善につながることを示す。
論文 参考訳(メタデータ) (2023-07-17T22:09:12Z) - Neural Algorithmic Reasoning with Causal Regularisation [18.299363749150093]
我々は重要な観察を行う: アルゴリズムが特定の中間計算を同一に実行する多くの異なる入力が存在する。
この洞察により、アルゴリズムの中間軌道が与えられた場合、ターゲットアルゴリズムが全く同じ次の軌道ステップを持つような入力を生成するデータ拡張手順を開発することができる。
我々は、Hint-Relicと呼ばれる結果の手法が、推論器のOOD一般化能力を改善することを証明した。
論文 参考訳(メタデータ) (2023-02-20T19:41:15Z) - Towards Better Out-of-Distribution Generalization of Neural Algorithmic
Reasoning Tasks [51.8723187709964]
ニューラルネットワーク推論タスクのOOD一般化について検討する。
目標は、ディープニューラルネットワークを使用して入出力ペアからアルゴリズムを学ぶことである。
論文 参考訳(メタデータ) (2022-11-01T18:33:20Z) - A Continuous Optimisation Benchmark Suite from Neural Network Regression [0.0]
ニューラルネットワークのトレーニングは、近年のディープラーニングの成功で注目を集めている最適化タスクである。
勾配降下変種は、大規模機械学習タスクにおける信頼性の高いパフォーマンスにおいて、最も一般的な選択である。
CORNNは、ニューラルネットワークのトレーニング問題に対して、連続的なブラックボックスアルゴリズムのパフォーマンスをベンチマークするスイートである。
論文 参考訳(メタデータ) (2021-09-12T20:24:11Z) - Optimizing Memory Placement using Evolutionary Graph Reinforcement
Learning [56.83172249278467]
大規模検索空間を対象とした進化グラフ強化学習(EGRL)を提案する。
我々は、推論のために、Intel NNP-Iチップ上で、我々のアプローチを直接訓練し、検証する。
また,NNP-Iコンパイラと比較して28~78%の高速化を実現している。
論文 参考訳(メタデータ) (2020-07-14T18:50:12Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
本稿では,新たなノードやエッジを自動的に拡張して,高密度サブグラフ内のラベル類似性を向上する,新しい前処理手法であるElectoral College(ELCO)を提案する。
テストされたすべての設定において、我々の手法はベースモデルの平均スコアを4.7ポイントの広いマージンで引き上げるとともに、常に最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2020-06-10T14:48:48Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。