Secured Quantum Identity Authentication Protocol for Quantum Networks
- URL: http://arxiv.org/abs/2312.05774v1
- Date: Sun, 10 Dec 2023 05:36:49 GMT
- Title: Secured Quantum Identity Authentication Protocol for Quantum Networks
- Authors: Mohamed Shaban and Muhammad Ismail
- Abstract summary: This paper proposes a quantum identity authentication protocol that protects quantum networks from malicious entanglements.
Unlike the existing protocols, the proposed quantum authentication protocol does not require periodic refreshments of the shared secret keys.
- Score: 2.3317857568404032
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum Internet signifies a remarkable advancement in communication
technology, harnessing the principles of quantum entanglement and superposition
to facilitate unparalleled levels of security and efficient computations.
Quantum communication can be achieved through the utilization of quantum
entanglement. Through the exchange of entangled pairs between two entities,
quantum communication becomes feasible, enabled by the process of quantum
teleportation. Given the lossy nature of the channels and the exponential
decoherence of the transmitted photons, a set of intermediate nodes can serve
as quantum repeaters to perform entanglement swapping and directly entangle two
distant nodes. Such quantum repeaters may be malicious and by setting up
malicious entanglements, intermediate nodes can jeopardize the confidentiality
of the quantum information exchanged between the two communication nodes.
Hence, this paper proposes a quantum identity authentication protocol that
protects quantum networks from malicious entanglements. Unlike the existing
protocols, the proposed quantum authentication protocol does not require
periodic refreshments of the shared secret keys. Simulation results demonstrate
that the proposed protocol can detect malicious entanglements with a 100%
probability after an average of 4 authentication rounds.
Related papers
- Unconditionally secure key distribution without quantum channel [0.76146285961466]
Currently, the quantum scheme stands as the only known method for achieving unconditionally secure key distribution.
We propose another key distribution scheme with unconditional security, named probability key distribution, that promises users between any two distances to generate a fixed and high secret key rate.
Non-local entangled states can be generated, identified and measured in the equivalent virtual protocol and can be used to extract secret keys.
arXiv Detail & Related papers (2024-08-24T15:13:14Z) - Guarantees on the structure of experimental quantum networks [109.08741987555818]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Quantum networks using counterfactual quantum communication [0.0]
We propose a new counterfactual quantum communication protocol for transmitting an entangled state from a pair of electrons to two independent photons.
We show that the protocol finds uses in building quantum repeaters leading to a counterfactual quantum network.
arXiv Detail & Related papers (2024-01-30T19:27:09Z) - Efficient and secure quantum network coding based on quantum full
homomorphic encryption [9.06651457984998]
A quantum full homomorphic encryption protocol is constructed utilizing $d$-dimensional universal quantum gates.
The proposed protocol not only enables to transfer information in $d$-dimensional quantum system, but also requires only 1 quantum gate and a key of length 2 in the encryption phase.
arXiv Detail & Related papers (2023-05-25T12:17:15Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Cavity-enhanced quantum network nodes [0.0]
A future quantum network will consist of quantum processors that are connected by quantum channels.
I will describe how optical resonators facilitate quantum network nodes.
arXiv Detail & Related papers (2022-05-30T18:50:35Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Benchmarking of Quantum Protocols [0.9176056742068812]
We consider several quantum protocols that enable promising functionalities and services in near-future quantum networks.
We use NetSquid simulation platform to evaluate the effect of various sources of noise on the performance of these protocols.
arXiv Detail & Related papers (2021-11-03T21:17:04Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.