Quantum networks using counterfactual quantum communication
- URL: http://arxiv.org/abs/2401.17397v1
- Date: Tue, 30 Jan 2024 19:27:09 GMT
- Title: Quantum networks using counterfactual quantum communication
- Authors: Aakash Warke, Kishore Thapliyal and Anirban Pathak
- Abstract summary: We propose a new counterfactual quantum communication protocol for transmitting an entangled state from a pair of electrons to two independent photons.
We show that the protocol finds uses in building quantum repeaters leading to a counterfactual quantum network.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Counterfactual quantum communication is one of the most interesting facets of
quantum communication, allowing two parties to communicate without any
transmission of quantum or classical particles between the parties involved in
the communication process. This aspect of quantum communication originates from
the interaction-free measurements where the chained quantum Zeno effect plays
an important role. Here, we propose a new counterfactual quantum communication
protocol for transmitting an entangled state from a pair of electrons to two
independent photons. Interestingly, the protocol proposed here shows that the
counterfactual method can be employed to transfer information from house qubits
to flying qubits. Following this, we show that the protocol finds uses in
building quantum repeaters leading to a counterfactual quantum network,
enabling counterfactual communication over a linear quantum network.
Related papers
- Simulation of Quantum Transduction Strategies for Quantum Networks [7.486717790185952]
We extend SeQUeNCe, a discrete-event simulator of quantum networks, with a quantum transducer component.
We explore two protocols for transmitting quantum information between superconducting nodes via optical channels.
Our preliminary results align with theoretical predictions, offering simulation-based validation of the protocols.
arXiv Detail & Related papers (2024-11-18T08:47:11Z) - Enhanced quantum state transfer: Circumventing quantum chaotic behavior [35.74056021340496]
We show how to transfer few-particle quantum states in a two-dimensional quantum network.
Our approach paves the way to short-distance quantum communication for connecting distributed quantum processors or registers.
arXiv Detail & Related papers (2024-02-01T19:00:03Z) - Secured Quantum Identity Authentication Protocol for Quantum Networks [2.3317857568404032]
This paper proposes a quantum identity authentication protocol that protects quantum networks from malicious entanglements.
Unlike the existing protocols, the proposed quantum authentication protocol does not require periodic refreshments of the shared secret keys.
arXiv Detail & Related papers (2023-12-10T05:36:49Z) - Increasing Quantum Communication Rates Using Hyperentangled Photonic
States [10.785645909949073]
Entanglement is a fundamental resource for quantum communication and information processing.
We propose a technique for achieving higher transmission rates for quantum communication by using hyperentangled states.
arXiv Detail & Related papers (2023-07-12T07:35:49Z) - Two-Server Oblivious Transfer for Quantum Messages [71.78056556634196]
We propose two-server oblivious transfer protocols for quantum messages.
Oblivious transfer is considered as a cryptographic primitive task for quantum information processing over quantum network.
arXiv Detail & Related papers (2022-11-07T05:12:24Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Long-distance multiplexed quantum teleportation from a telecom photon to
a solid-state qubit [0.0]
We demonstrate long distance quantum teleportation from a photonic qubit at telecom wavelength to a matter qubit, stored as a collective excitation in a solid-state quantum memory.
Our approach is time-multiplexed, allowing for an increase in the teleportation rate, and is directly compatible with the deployed telecommunication networks.
arXiv Detail & Related papers (2022-09-13T18:09:56Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.