論文の概要: Improving Subgraph-GNNs via Edge-Level Ego-Network Encodings
- arxiv url: http://arxiv.org/abs/2312.05905v2
- Date: Thu, 2 May 2024 12:18:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 22:00:43.148372
- Title: Improving Subgraph-GNNs via Edge-Level Ego-Network Encodings
- Title(参考訳): エッジレベルEgo-NetworkエンコーディングによるサブグラフGNNの改善
- Authors: Nurudin Alvarez-Gonzalez, Andreas Kaltenbrunner, Vicenç Gómez,
- Abstract要約: 本稿では,グラフ学習のためのエッジレベルのego-networkエンコーディングを提案する。
追加のノードとエッジ機能を提供することで、Message Passing Graph Neural Networks(MP-GNNs)を強化することができる。
このような符号化はノードベースのMP-GNNよりも表現力が高いことを示す。
- 参考スコア(独自算出の注目度): 3.8711489380602804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel edge-level ego-network encoding for learning on graphs that can boost Message Passing Graph Neural Networks (MP-GNNs) by providing additional node and edge features or extending message-passing formats. The proposed encoding is sufficient to distinguish Strongly Regular Graphs, a family of challenging 3-WL equivalent graphs. We show theoretically that such encoding is more expressive than node-based sub-graph MP-GNNs. In an empirical evaluation on four benchmarks with 10 graph datasets, our results match or improve previous baselines on expressivity, graph classification, graph regression, and proximity tasks -- while reducing memory usage by 18.1x in certain real-world settings.
- Abstract(参考訳): 本稿では,ノードやエッジ機能の追加やメッセージパッシングフォーマットの拡張によって,MP-GNN(Message Passing Graph Neural Networks)を強化可能な,グラフ上での新たなエッジレベルのego-network符号化を提案する。
提案した符号化法は,3WL相当グラフ群であるStrongly Regular Graphsを識別するのに十分である。
このような符号化はノードベースのMP-GNNよりも表現力が高いことを示す。
10のグラフデータセットを持つ4つのベンチマークに対する実証的な評価では、実際の設定ではメモリ使用量を18.1倍削減しつつ、表現性、グラフ分類、グラフ回帰、近接タスクの以前のベースラインにマッチまたは改善しています。
関連論文リスト
- A Flexible, Equivariant Framework for Subgraph GNNs via Graph Products and Graph Coarsening [18.688057947275112]
グラフグラフニューラルネットワーク(サブグラフGNN)は,グラフをサブグラフの集合として表現することで,メッセージパスGNNの表現性を向上する。
以前のアプローチでは、ランダムにまたは学習可能なサンプリングによって選択されたサブグラフのサブセットのみを処理することを提案していた。
本稿では,これらの問題に対処する新しいSubgraph GNNフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-13T16:29:06Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - UniG-Encoder: A Universal Feature Encoder for Graph and Hypergraph Node
Classification [6.977634174845066]
グラフおよびハイパーグラフ表現学習のための普遍的特徴エンコーダ(UniG-Encoder)が設計されている。
アーキテクチャは、連結ノードのトポロジ的関係をエッジやハイパーエッジに前方変換することから始まる。
符号化されたノードの埋め込みは、投影行列の変換によって記述された逆変換から導かれる。
論文 参考訳(メタデータ) (2023-08-03T09:32:50Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
グラフニューラルネットワーク(GNN)は、ネットワーク化されたデータの意味のあるパターンを活用するために、グラフ畳み込みに依存している。
我々は,成長するグラフ列の極限オブジェクトであるグラフオンを利用して,非常に大きなグラフ上のGNNを学習することを提案する。
論文 参考訳(メタデータ) (2022-10-27T16:00:45Z) - SoftEdge: Regularizing Graph Classification with Random Soft Edges [18.165965620873745]
グラフデータ拡張はグラフニューラルネットワーク(GNN)の正規化において重要な役割を果たす
単純なエッジとノード操作は、同じ構造を持つグラフや、GNNをメッセージパッシングするための区別できない構造を生成することができる。
我々は,任意のグラフのエッジの一部にランダムな重みを割り当てて,そのグラフ上の動的近傍を構築するSoftEdgeを提案する。
論文 参考訳(メタデータ) (2022-04-21T20:12:36Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - GNNAutoScale: Scalable and Expressive Graph Neural Networks via
Historical Embeddings [51.82434518719011]
GNNAutoScale(GAS)は、任意のメッセージパスGNNを大規模グラフにスケールするためのフレームワークである。
ガスは、前回のトレーニングの繰り返しから過去の埋め込みを利用して計算グラフのサブツリー全体を掘り起こします。
ガスは大規模グラフ上で最先端のパフォーマンスに達する。
論文 参考訳(メタデータ) (2021-06-10T09:26:56Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - GraphCrop: Subgraph Cropping for Graph Classification [36.33477716380905]
我々は,サブ構造欠落の現実的なノイズをシミュレートするtextbfGraphCrop (Subgraph Cropping) データ拡張法を開発した。
グラフ分類のための有効な構造コンテキストを保存することにより、GNNはグローバルな意味でグラフ構造の内容を理解することを奨励する。
論文 参考訳(メタデータ) (2020-09-22T14:05:41Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
本稿では,新たなノードやエッジを自動的に拡張して,高密度サブグラフ内のラベル類似性を向上する,新しい前処理手法であるElectoral College(ELCO)を提案する。
テストされたすべての設定において、我々の手法はベースモデルの平均スコアを4.7ポイントの広いマージンで引き上げるとともに、常に最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2020-06-10T14:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。