論文の概要: Neural Architecture Codesign for Fast Bragg Peak Analysis
- arxiv url: http://arxiv.org/abs/2312.05978v1
- Date: Sun, 10 Dec 2023 19:42:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-12 17:40:27.448007
- Title: Neural Architecture Codesign for Fast Bragg Peak Analysis
- Title(参考訳): 高速ブラッグピーク解析のためのニューラルアーキテクチャ符号符号
- Authors: Luke McDermott, Jason Weitz, Dmitri Demler, Daniel Cummings, Nhan
Tran, Javier Duarte
- Abstract要約: 我々は,高速かつリアルタイムなブラッグピーク解析のためのニューラルネットワーク符号の合理化のための自動パイプラインを開発した。
我々の手法では、ハードウェアコストを含むこれらのモデルを強化するために、ニューラルアーキテクチャ検索とAutoMLを使用し、よりハードウェア効率の良いニューラルアーキテクチャの発見に繋がる。
- 参考スコア(独自算出の注目度): 1.7081438846690533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop an automated pipeline to streamline neural architecture codesign
for fast, real-time Bragg peak analysis in high-energy diffraction microscopy.
Traditional approaches, notably pseudo-Voigt fitting, demand significant
computational resources, prompting interest in deep learning models for more
efficient solutions. Our method employs neural architecture search and AutoML
to enhance these models, including hardware costs, leading to the discovery of
more hardware-efficient neural architectures. Our results match the
performance, while achieving a 13$\times$ reduction in bit operations compared
to the previous state-of-the-art. We show further speedup through model
compression techniques such as quantization-aware-training and neural network
pruning. Additionally, our hierarchical search space provides greater
flexibility in optimization, which can easily extend to other tasks and
domains.
- Abstract(参考訳): 高エネルギー回折顕微鏡で高速かつリアルタイムブラッグピーク解析を行うために,ニューラルネットワークのコード署名を合理化する自動パイプラインを開発した。
従来のアプローチ、特に擬似Voigtフィッティングは重要な計算資源を必要とし、より効率的なソリューションのためのディープラーニングモデルへの関心を喚起した。
我々の手法では、ハードウェアコストを含むこれらのモデルを強化するためにニューラルアーキテクチャ検索とAutoMLを使用し、よりハードウェア効率の良いニューラルアーキテクチャの発見に繋がる。
その結果,従来の最先端技術と比較して,ビット演算の13$\times$削減を実現した。
量子化・アウェアトレーニングやニューラルネットワークのプルーニングといったモデル圧縮技術により、さらなるスピードアップを示す。
さらに、階層的な検索空間は最適化の柔軟性を高め、他のタスクやドメインにも簡単に拡張できます。
関連論文リスト
- Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
我々は、様々な計算プリミティブから構築された新しいハイブリッドアーキテクチャを特定し、テストする。
本研究では,大規模計算最適法則と新しい状態最適スケーリング法則解析を用いて,結果のアーキテクチャを実験的に検証する。
我々は,MAD合成法と計算-最適パープレキシティを相関させ,新しいアーキテクチャの正確な評価を可能にする。
論文 参考訳(メタデータ) (2024-03-26T16:33:12Z) - Multi-conditioned Graph Diffusion for Neural Architecture Search [8.290336491323796]
本稿では、離散的な条件付きグラフ拡散プロセスを用いて、高性能ニューラルネットワークアーキテクチャを生成するグラフ拡散に基づくNAS手法を提案する。
6つの標準ベンチマークで有望な結果を示し、新しいアーキテクチャとユニークなアーキテクチャを高速に実現します。
論文 参考訳(メタデータ) (2024-03-09T21:45:31Z) - FlowNAS: Neural Architecture Search for Optical Flow Estimation [65.44079917247369]
本研究では,フロー推定タスクにおいて,より優れたエンコーダアーキテクチャを自動で見つけるために,FlowNASというニューラルアーキテクチャ探索手法を提案する。
実験の結果、スーパーネットワークから受け継いだ重み付きアーキテクチャは、KITTI上で4.67%のF1-allエラーを達成していることがわかった。
論文 参考訳(メタデータ) (2022-07-04T09:05:25Z) - FreeREA: Training-Free Evolution-based Architecture Search [17.202375422110553]
FreeREAは、トレーニングなしメトリクスの最適化組み合わせを利用してアーキテクチャをランク付けする、独自のセルベースの進化NASアルゴリズムである。
本実験はNAS-Bench-101とNATS-Benchの共通ベンチマークを用いて,フリーレアがモデル自動設計のための高速で効率的かつ効果的な探索手法であることを実証した。
論文 参考訳(メタデータ) (2022-06-17T11:16:28Z) - Neural Architecture Search for Speech Emotion Recognition [72.1966266171951]
本稿では,SERモデルの自動構成にニューラルアーキテクチャサーチ(NAS)技術を適用することを提案する。
NASはモデルパラメータサイズを維持しながらSER性能(54.89%から56.28%)を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-03-31T10:16:10Z) - Efficient Neural Architecture Search with Performance Prediction [0.0]
ニューラルアーキテクチャ検索を使用して、目前にあるタスクに最適なネットワークアーキテクチャを見つけます。
既存のNASアルゴリズムは、スクラッチから完全にトレーニングすることで、新しいアーキテクチャの適合性を評価する。
サンプルアーキテクチャの評価を高速化するために,エンドツーエンドのオフライン性能予測器を提案する。
論文 参考訳(メタデータ) (2021-08-04T05:44:16Z) - Does Form Follow Function? An Empirical Exploration of the Impact of
Deep Neural Network Architecture Design on Hardware-Specific Acceleration [76.35307867016336]
本研究では,深層ニューラルネットワーク設計が推論速度向上の程度に与える影響について検討する。
ハードウェア固有のアクセラレーションを活用することで平均推論速度が380%向上する一方で、マクロアーキテクチャ設計パターンによって推論速度が大幅に変化することを示した。
論文 参考訳(メタデータ) (2021-07-08T23:05:39Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
我々は,MS-RANAS(Multi-Scale Resource-Aware Neural Architecture Search)を提案する。
我々は,検索コストの削減を図るために,ワンショットのアーキテクチャ探索手法を採用した。
我々は精度-速度トレードオフの観点から最先端の結果を得る。
論文 参考訳(メタデータ) (2020-09-29T11:56:01Z) - STONNE: A Detailed Architectural Simulator for Flexible Neural Network
Accelerators [5.326345912766044]
STONNEはサイクル精度が高く、高度にモジュール化され、高度に拡張可能なシミュレーションフレームワークである。
一般に公開されているBSV符号化MAERIの実装の性能結果にどのように近づくかを示す。
論文 参考訳(メタデータ) (2020-06-10T19:20:52Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。