Fused Extended Two-Way Fixed Effects for Difference-in-Differences With Staggered Adoptions
- URL: http://arxiv.org/abs/2312.05985v3
- Date: Mon, 28 Oct 2024 01:05:19 GMT
- Title: Fused Extended Two-Way Fixed Effects for Difference-in-Differences With Staggered Adoptions
- Authors: Gregory Faletto,
- Abstract summary: We propose a machine learning estimator with a single tuning parameter, fused extended two-way fixed effects (FETWFE)
Under an appropriate sparsity assumption FETWFE identifies the correct restrictions with probability tending to one, which improves efficiency.
We demonstrate FETWFE in simulation studies and an empirical application.
- Score: 0.0
- License:
- Abstract: To address the bias of the canonical two-way fixed effects estimator for difference-in-differences under staggered adoptions, Wooldridge (2021) proposed the extended two-way fixed effects estimator, which adds many parameters. However, this reduces efficiency. Restricting some of these parameters to be equal (for example, subsequent treatment effects within a cohort) helps, but ad hoc restrictions may reintroduce bias. We propose a machine learning estimator with a single tuning parameter, fused extended two-way fixed effects (FETWFE), that enables automatic data-driven selection of these restrictions. We prove that under an appropriate sparsity assumption FETWFE identifies the correct restrictions with probability tending to one, which improves efficiency. We also prove the consistency, oracle property, and asymptotic normality of FETWFE for several classes of heterogeneous marginal treatment effect estimators under either conditional or marginal parallel trends, and we prove the same results for conditional average treatment effects under conditional parallel trends. We demonstrate FETWFE in simulation studies and an empirical application.
Related papers
- On the Role of Surrogates in Conformal Inference of Individual Causal Effects [0.0]
We introduce underlineSurrogate-assisted underlineConformal underlineInference for underlineEfficient IunderlineNdividual underlineCausal underlineEffects (SCIENCE)
SCIENCE is a framework designed to construct more efficient prediction intervals for individual treatment effects (ITEs)
It is applied to the phase 3 Moderna COVE COVID-19 vaccine trial.
arXiv Detail & Related papers (2024-12-16T21:36:11Z) - Semiparametric inference for impulse response functions using double/debiased machine learning [49.1574468325115]
We introduce a machine learning estimator for the impulse response function (IRF) in settings where a time series of interest is subjected to multiple discrete treatments.
The proposed estimator can rely on fully nonparametric relations between treatment and outcome variables, opening up the possibility to use flexible machine learning approaches to estimate IRFs.
arXiv Detail & Related papers (2024-11-15T07:42:02Z) - A Bayesian Semiparametric Method For Estimating Causal Quantile Effects [1.1118668841431563]
We propose a semiparametric conditional distribution regression model that allows inference on any functionals of counterfactual distributions.
We show via simulations that the use of double balancing score for confounding adjustment improves performance over adjusting for any single score alone.
We apply the proposed method to the North Carolina birth weight dataset to analyze the effect of maternal smoking on infant's birth weight.
arXiv Detail & Related papers (2022-11-03T05:15:18Z) - Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation [10.75801980090826]
We present three novel Bayesian methods to estimate the expectation of the ultimate treatment effect.
These methods differ on the source of uncertainty considered and allow for combining two sources of data.
We generalize these ideas to the off-policy evaluation framework.
arXiv Detail & Related papers (2022-11-02T23:39:36Z) - Monotonicity and Double Descent in Uncertainty Estimation with Gaussian
Processes [52.92110730286403]
It is commonly believed that the marginal likelihood should be reminiscent of cross-validation metrics and that both should deteriorate with larger input dimensions.
We prove that by tuning hyper parameters, the performance, as measured by the marginal likelihood, improves monotonically with the input dimension.
We also prove that cross-validation metrics exhibit qualitatively different behavior that is characteristic of double descent.
arXiv Detail & Related papers (2022-10-14T08:09:33Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing.
We study the case where probability distributions are not known a priori but need to be estimated from data.
arXiv Detail & Related papers (2022-08-29T16:16:22Z) - A New Central Limit Theorem for the Augmented IPW Estimator: Variance
Inflation, Cross-Fit Covariance and Beyond [0.9172870611255595]
Cross-fit inverse probability weighting (AIPW) with cross-fitting is a popular choice in practice.
We study this cross-fit AIPW estimator under well-specified outcome regression and propensity score models in a high-dimensional regime.
Our work utilizes a novel interplay between three distinct tools--approximate message passing theory, the theory of deterministic equivalents, and the leave-one-out approach.
arXiv Detail & Related papers (2022-05-20T14:17:53Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
We introduce deconfounding scores, which induce better overlap without biasing the target of estimation.
We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.
In particular, we show that this technique could be an attractive alternative to standard regularizations.
arXiv Detail & Related papers (2021-04-12T18:50:11Z) - Doubly Robust Semiparametric Difference-in-Differences Estimators with
High-Dimensional Data [15.27393561231633]
We propose a doubly robust two-stage semiparametric difference-in-difference estimator for estimating heterogeneous treatment effects.
The first stage allows a general set of machine learning methods to be used to estimate the propensity score.
In the second stage, we derive the rates of convergence for both the parametric parameter and the unknown function.
arXiv Detail & Related papers (2020-09-07T15:14:29Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.