Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation
- URL: http://arxiv.org/abs/2211.01518v1
- Date: Wed, 2 Nov 2022 23:39:36 GMT
- Title: Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation
- Authors: Diego Martinez-Taboada, Dino Sejdinovic
- Abstract summary: We present three novel Bayesian methods to estimate the expectation of the ultimate treatment effect.
These methods differ on the source of uncertainty considered and allow for combining two sources of data.
We generalize these ideas to the off-policy evaluation framework.
- Score: 10.75801980090826
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The counterfactual distribution models the effect of the treatment in the
untreated group. While most of the work focuses on the expected values of the
treatment effect, one may be interested in the whole counterfactual
distribution or other quantities associated to it. Building on the framework of
Bayesian conditional mean embeddings, we propose a Bayesian approach for
modeling the counterfactual distribution, which leads to quantifying the
epistemic uncertainty about the distribution. The framework naturally extends
to the setting where one observes multiple treatment effects (e.g. an
intermediate effect after an interim period, and an ultimate treatment effect
which is of main interest) and allows for additionally modelling uncertainty
about the relationship of these effects. For such goal, we present three novel
Bayesian methods to estimate the expectation of the ultimate treatment effect,
when only noisy samples of the dependence between intermediate and ultimate
effects are provided. These methods differ on the source of uncertainty
considered and allow for combining two sources of data. Moreover, we generalize
these ideas to the off-policy evaluation framework, which can be seen as an
extension of the counterfactual estimation problem. We empirically explore the
calibration of the algorithms in two different experimental settings which
require data fusion, and illustrate the value of considering the uncertainty
stemming from the two sources of data.
Related papers
- A Semiparametric Approach to Causal Inference [2.092897805817524]
In causal inference, an important problem is to quantify the effects of interventions or treatments.
In this paper, we employ a semiparametric density ratio model (DRM) to characterize the counterfactual distributions.
Our model offers flexibility by avoiding strict parametric assumptions on the counterfactual distributions.
arXiv Detail & Related papers (2024-11-01T18:03:38Z) - Conformal Diffusion Models for Individual Treatment Effect Estimation and Inference [6.406853903837333]
Individual treatment effect offers the most granular measure of treatment effect on an individual level.
We propose a novel conformal diffusion model-based approach that addresses those intricate challenges.
arXiv Detail & Related papers (2024-08-02T21:35:08Z) - Uncertainty Quantification in Heterogeneous Treatment Effect Estimation
with Gaussian-Process-Based Partially Linear Model [2.1212179660694104]
Estimating heterogeneous treatment effects across individuals has attracted growing attention as a statistical tool for performing critical decision-making.
We propose a Bayesian inference framework that quantifies the uncertainty in treatment effect estimation to support decision-making in a relatively small sample size setting.
arXiv Detail & Related papers (2023-12-16T12:42:28Z) - Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation [137.3520153445413]
A notable gap exists in the evaluation of causal discovery methods, where insufficient emphasis is placed on downstream inference.
We evaluate seven established baseline causal discovery methods including a newly proposed method based on GFlowNets.
The results of our study demonstrate that some of the algorithms studied are able to effectively capture a wide range of useful and diverse ATE modes.
arXiv Detail & Related papers (2023-07-11T02:58:10Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
We propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt)
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions.
The proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-17T15:01:05Z) - Neighborhood Adaptive Estimators for Causal Inference under Network
Interference [152.4519491244279]
We consider the violation of the classical no-interference assumption, meaning that the treatment of one individuals might affect the outcomes of another.
To make interference tractable, we consider a known network that describes how interference may travel.
We study estimators for the average direct treatment effect on the treated in such a setting.
arXiv Detail & Related papers (2022-12-07T14:53:47Z) - A Bayesian Semiparametric Method For Estimating Causal Quantile Effects [1.1118668841431563]
We propose a semiparametric conditional distribution regression model that allows inference on any functionals of counterfactual distributions.
We show via simulations that the use of double balancing score for confounding adjustment improves performance over adjusting for any single score alone.
We apply the proposed method to the North Carolina birth weight dataset to analyze the effect of maternal smoking on infant's birth weight.
arXiv Detail & Related papers (2022-11-03T05:15:18Z) - Combining Experimental and Observational Data for Identification of
Long-Term Causal Effects [13.32091725929965]
We consider the task of estimating the causal effect of a treatment variable on a long-term outcome variable using data from an observational domain and an experimental domain.
The observational data is assumed to be confounded and hence without further assumptions, this dataset alone cannot be used for causal inference either.
arXiv Detail & Related papers (2022-01-26T04:21:14Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
We study the causal data fusion problem, where datasets pertaining to multiple causal graphs are combined to estimate the average treatment effect of a target variable.
We introduce a framework which combines ideas from probabilistic integration and kernel mean embeddings to represent interventional distributions in the reproducing kernel Hilbert space.
arXiv Detail & Related papers (2021-06-07T10:14:18Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.