論文の概要: TPRNN: A Top-Down Pyramidal Recurrent Neural Network for Time Series
Forecasting
- arxiv url: http://arxiv.org/abs/2312.06328v1
- Date: Mon, 11 Dec 2023 12:21:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-12 15:56:45.922112
- Title: TPRNN: A Top-Down Pyramidal Recurrent Neural Network for Time Series
Forecasting
- Title(参考訳): tprnn:時系列予測のためのトップダウンピラミッド型リカレントニューラルネットワーク
- Authors: Ling Chen and Jiahua Cui
- Abstract要約: 時系列は、異なるスケールで異なる時間パターン、すなわち異なる時間パターンを持つ。
時系列予測のためのTPRNN(Top-down Pyramidal Recurrent Neural Network)を提案する。
TPRNNは、最高のベースラインに比べて平均8.13%改善して最先端のパフォーマンスを達成した。
- 参考スコア(独自算出の注目度): 7.08506873242564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series refer to a series of data points indexed in time order, which can
be found in various fields, e.g., transportation, healthcare, and finance.
Accurate time series forecasting can enhance optimization planning and
decision-making support. Time series have multi-scale characteristics, i.e.,
different temporal patterns at different scales, which presents a challenge for
time series forecasting. In this paper, we propose TPRNN, a Top-down Pyramidal
Recurrent Neural Network for time series forecasting. We first construct
subsequences of different scales from the input, forming a pyramid structure.
Then by executing a multi-scale information interaction module from top to
bottom, we model both the temporal dependencies of each scale and the
influences of subsequences of different scales, resulting in a complete
modeling of multi-scale temporal patterns in time series. Experiments on seven
real-world datasets demonstrate that TPRNN has achieved the state-of-the-art
performance with an average improvement of 8.13% in MSE compared to the best
baseline.
- Abstract(参考訳): 時系列(英: time series)とは、時間順にインデックスされた一連のデータポイントを指し、交通、医療、金融など様々な分野で見られる。
正確な時系列予測は最適化計画と意思決定支援を強化することができる。
時系列は、異なるスケールの時間パターン、すなわち異なるスケールの時間パターンを持つため、時系列予測の課題が提示される。
本稿では,時系列予測のためのトップダウンピラミッド型リカレントニューラルネットワークであるtprnnを提案する。
まず、入力から異なるスケールのサブシーケンスを構築し、ピラミッド構造を形成する。
そして,マルチスケール情報対話モジュールを上から下から実行することにより,各スケールの時間的依存性と,異なるスケールのサブシーケンスの影響の両方をモデル化し,時系列におけるマルチスケールの時間的パターンをモデル化する。
7つの実世界のデータセットの実験により、TPRNNは最高のベースラインに比べて平均8.13%改善した。
関連論文リスト
- RPMixer: Shaking Up Time Series Forecasting with Random Projections for Large Spatial-Temporal Data [33.0546525587517]
RPMixer と呼ばれる全MLP時系列予測アーキテクチャを提案する。
提案手法は,各ブロックがアンサンブルモデルにおいてベース学習者のように振る舞う深層ニューラルネットワークのアンサンブル的挙動に乗じる。
論文 参考訳(メタデータ) (2024-02-16T07:28:59Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - TimeGNN: Temporal Dynamic Graph Learning for Time Series Forecasting [20.03223916749058]
時系列予測は、科学と工学における重要な現実世界の応用の核心にある。
動的時間グラフ表現を学習するTimeGNNを提案する。
TimeGNNは、他の最先端のグラフベースの手法よりも4倍から80倍高速な推論時間を実現している。
論文 参考訳(メタデータ) (2023-07-27T08:10:19Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - Pre-training Enhanced Spatial-temporal Graph Neural Network for
Multivariate Time Series Forecasting [13.441945545904504]
スケーラブルな時系列事前学習モデル(STEP)によりSTGNNが拡張される新しいフレームワークを提案する。
具体的には、非常に長期の歴史時系列から時間パターンを効率的に学習するための事前学習モデルを設計する。
我々のフレームワークは下流のSTGNNを著しく強化することができ、事前学習モデルは時間パターンを適切にキャプチャする。
論文 参考訳(メタデータ) (2022-06-18T04:24:36Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Time Series is a Special Sequence: Forecasting with Sample Convolution
and Interaction [9.449017120452675]
時系列データ(英: time series)とは、時系列データの一種で、時系列で記録された観測の集合である。
既存のディープラーニング技術では、時系列解析にジェネリックシーケンスモデルを使用しており、そのユニークな性質を無視している。
本稿では,新しいニューラルネットワークアーキテクチャを提案し,時系列予測問題に適用し,時間的モデリングのための複数の解像度でサンプル畳み込みと相互作用を行う。
論文 参考訳(メタデータ) (2021-06-17T08:15:04Z) - Radflow: A Recurrent, Aggregated, and Decomposable Model for Networks of
Time Series [77.47313102926017]
Radflowは、お互いに影響を与える時系列ネットワークの新しいモデルである。
それは3つの重要なアイデアを具現化します:時間に依存するノード埋め込み、マルチヘッドの注意を持つ隣接するノードからの影響の流れの集約、および時系列の多層分解を得るための繰り返しニューラルネットワーク。
radflowは異なる傾向や季節パターンを学習でき、欠落したノードやエッジに対して頑健であり、ネットワークの隣人間の時間パターンの相関は影響強度を反映している。
論文 参考訳(メタデータ) (2021-02-15T00:57:28Z) - A Deep Structural Model for Analyzing Correlated Multivariate Time
Series [11.009809732645888]
相関した多変量時系列入力を処理できる深層学習構造時系列モデルを提案する。
モデルは、トレンド、季節性、イベントコンポーネントを明示的に学習し、抽出する。
我々は,様々な時系列データセットに関する総合的な実験を通して,そのモデルと最先端のいくつかの手法を比較した。
論文 参考訳(メタデータ) (2020-01-02T18:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。