論文の概要: Towards A Flexible Accuracy-Oriented Deep Learning Module Inference Latency Prediction Framework for Adaptive Optimization Algorithms
- arxiv url: http://arxiv.org/abs/2312.06440v2
- Date: Thu, 27 Jun 2024 19:01:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 15:37:58.209401
- Title: Towards A Flexible Accuracy-Oriented Deep Learning Module Inference Latency Prediction Framework for Adaptive Optimization Algorithms
- Title(参考訳): 適応最適化アルゴリズムのためのフレキシブルな精度指向ディープラーニングモジュール推論遅延予測フレームワークを目指して
- Authors: Jingran Shen, Nikos Tziritas, Georgios Theodoropoulos,
- Abstract要約: 本稿では,ディープラーニングモジュール推論遅延予測フレームワークを提案する。
DNNモジュールごとに複数のRMをトレーニングするために、カスタマイズ可能な入力パラメータのセットをホストする。
トレーニングされたRMのセットを自動的に選択し、全体的な予測精度が最高になる。
- 参考スコア(独自算出の注目度): 0.49157446832511503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid development of Deep Learning, more and more applications on the cloud and edge tend to utilize large DNN (Deep Neural Network) models for improved task execution efficiency as well as decision-making quality. Due to memory constraints, models are commonly optimized using compression, pruning, and partitioning algorithms to become deployable onto resource-constrained devices. As the conditions in the computational platform change dynamically, the deployed optimization algorithms should accordingly adapt their solutions. To perform frequent evaluations of these solutions in a timely fashion, RMs (Regression Models) are commonly trained to predict the relevant solution quality metrics, such as the resulted DNN module inference latency, which is the focus of this paper. Existing prediction frameworks specify different RM training workflows, but none of them allow flexible configurations of the input parameters (e.g., batch size, device utilization rate) and of the selected RMs for different modules. In this paper, a deep learning module inference latency prediction framework is proposed, which i) hosts a set of customizable input parameters to train multiple different RMs per DNN module (e.g., convolutional layer) with self-generated datasets, and ii) automatically selects a set of trained RMs leading to the highest possible overall prediction accuracy, while keeping the prediction time / space consumption as low as possible. Furthermore, a new RM, namely MEDN (Multi-task Encoder-Decoder Network), is proposed as an alternative solution. Comprehensive experiment results show that MEDN is fast and lightweight, and capable of achieving the highest overall prediction accuracy and R-squared value. The Time/Space-efficient Auto-selection algorithm also manages to improve the overall accuracy by 2.5% and R-squared by 0.39%, compared to the MEDN single-selection scheme.
- Abstract(参考訳): ディープラーニングの急速な開発により、クラウドやエッジ上のアプリケーションがますます多くなり、大きなDNN(Deep Neural Network)モデルを使用してタスクの実行効率と意思決定品質を改善する傾向にある。
メモリ制約のため、モデルは通常、圧縮、プルーニング、パーティショニングアルゴリズムを使用して最適化され、リソース制約のあるデバイスにデプロイできる。
計算プラットフォームの条件が動的に変化するにつれて、デプロイされた最適化アルゴリズムはそのソリューションに適応すべきである。
これらの解の頻繁な評価をタイムリーに行うために、RM(Regression Models)は一般的に、DNNモジュールの推論遅延などの関連する解品質指標を予測するために訓練される。
既存の予測フレームワークでは、異なるRMトレーニングワークフローを指定しているが、いずれのフレームワークも、入力パラメータ(例えば、バッチサイズ、デバイス利用率)と選択したRMの異なるモジュールに対する柔軟な設定を許可していない。
本稿では,ディープラーニングモジュール推論遅延予測フレームワークを提案する。
i) DNNモジュールごとに複数の異なるRM(例えば畳み込み層)を自己生成データセットでトレーニングするために、カスタマイズ可能な入力パラメータのセットをホストする。
二 予測時間/空間消費を極力低く保ちつつ、可能な限り全体的な予測精度を高めるための訓練されたRMのセットを自動的に選択すること。
さらに、MEDN(Multi-task Encoder-Decoder Network)と呼ばれる新しいRMが代替ソリューションとして提案されている。
総合的な実験結果から,MEDNは高速かつ軽量であり,総合的な予測精度とR2乗値を達成することができることがわかった。
時間/空間効率のオートセレクションアルゴリズムは、MEDNのシングルセレクション方式と比較して、全体の精度を2.5%、R-2乗を0.39%向上させる。
関連論文リスト
- Towards Hyperparameter-Agnostic DNN Training via Dynamical System
Insights [4.513581513983453]
本稿では,ディープニューラルネットワーク(DNN),ECCO-DNNに特化した一階最適化手法を提案する。
本手法は, 最適変数軌道を動的システムとしてモデル化し, 軌道形状に基づいてステップサイズを適応的に選択する離散化アルゴリズムを開発する。
論文 参考訳(メタデータ) (2023-10-21T03:45:13Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Training Latency Minimization for Model-Splitting Allowed Federated Edge
Learning [16.8717239856441]
我々は,深層ニューラルネットワーク(DNN)の訓練において,クライアントが直面する計算能力の不足を軽減するためのモデル分割許容FL(SFL)フレームワークを提案する。
同期したグローバルアップデート設定では、グローバルトレーニングを完了するためのレイテンシは、クライアントがローカルトレーニングセッションを完了するための最大レイテンシによって決定される。
この混合整数非線形計画問題の解法として,AIモデルのカット層と他のパラメータの量的関係に適合する回帰法を提案し,TLMPを連続的な問題に変換する。
論文 参考訳(メタデータ) (2023-07-21T12:26:42Z) - Benchmarking Test-Time Unsupervised Deep Neural Network Adaptation on
Edge Devices [19.335535517714703]
エッジへの展開後のディープニューラルネットワーク(DNN)の予測精度は、新しいデータの分布の変化によって、時間とともに低下する可能性がある。
バッチ正規化パラメータを再調整することにより、ノイズデータに対するモデルの予測精度を向上させるため、近年の予測時間非教師なしDNN適応技術が導入されている。
本論文は, 各種エッジデバイスの性能とエネルギーを定量化するために, この種の技術に関する総合的な研究を初めて行ったものである。
論文 参考訳(メタデータ) (2022-03-21T19:10:40Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Automatic Mapping of the Best-Suited DNN Pruning Schemes for Real-Time
Mobile Acceleration [71.80326738527734]
本稿では,汎用的,きめ細かな構造化プルーニング手法とコンパイラの最適化を提案する。
提案手法は,より微細な構造化プルーニング手法とともに,最先端のDNN最適化フレームワークよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-22T23:53:14Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - A Privacy-Preserving-Oriented DNN Pruning and Mobile Acceleration
Framework [56.57225686288006]
モバイルエッジデバイスの限られたストレージとコンピューティング能力を満たすために、ディープニューラルネットワーク(DNN)の軽量プルーニングが提案されている。
従来のプルーニング手法は主に、ユーザデータのプライバシを考慮せずに、モデルのサイズを減らしたり、パフォーマンスを向上させることに重点を置いていた。
プライベートトレーニングデータセットを必要としないプライバシ保護指向のプルーニングおよびモバイルアクセラレーションフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-13T23:52:03Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
自己指向型オンライン学習最適化は、ディープニューラルネットワーク(DNN)と有限要素法(FEM)計算を統合している。
本アルゴリズムは, コンプライアンスの最小化, 流体構造最適化, 伝熱促進, トラス最適化の4種類の問題によって検証された。
その結果, 直接使用法と比較して計算時間を2~5桁削減し, 実験で検証した全ての最先端アルゴリズムより優れていた。
論文 参考訳(メタデータ) (2020-02-04T20:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。