Symptom-based Machine Learning Models for the Early Detection of
COVID-19: A Narrative Review
- URL: http://arxiv.org/abs/2312.06832v1
- Date: Fri, 8 Dec 2023 01:41:42 GMT
- Title: Symptom-based Machine Learning Models for the Early Detection of
COVID-19: A Narrative Review
- Authors: Moyosolu Akinloye
- Abstract summary: Machine learning models can analyze large datasets, incorporating patient-reported symptoms, clinical data, and medical imaging.
In this paper, we provide an overview of the landscape of symptoms-only machine learning models for predicting COVID-19, including their performance and limitations.
The review will also examine the performance of symptom-based models when compared to image-based models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the widespread testing protocols for COVID-19, there are still
significant challenges in early detection of the disease, which is crucial for
preventing its spread and optimizing patient outcomes. Owing to the limited
testing capacity in resource-strapped settings and the limitations of the
available traditional methods of testing, it has been established that a fast
and efficient strategy is important to fully stop the virus. Machine learning
models can analyze large datasets, incorporating patient-reported symptoms,
clinical data, and medical imaging. Symptom-based detection methods have been
developed to predict COVID-19, and they have shown promising results. In this
paper, we provide an overview of the landscape of symptoms-only machine
learning models for predicting COVID-19, including their performance and
limitations. The review will also examine the performance of symptom-based
models when compared to image-based models. Because different studies used
varying datasets, methodologies, and performance metrics. Selecting the model
that performs best relies on the context and objectives of the research.
However, based on the results, we observed that ensemble classifier performed
exceptionally well in predicting the occurrence of COVID-19 based on patient
symptoms with the highest overall accuracy of 97.88%. Gradient Boosting
Algorithm achieved an AUC (Area Under the Curve) of 0.90 and identified key
features contributing to the decision-making process. Image-based models, as
observed in the analyzed studies, have consistently demonstrated higher
accuracy than symptom-based models, often reaching impressive levels ranging
from 96.09% to as high as 99%.
Related papers
- Comparative Analysis of Epileptic Seizure Prediction: Exploring Diverse
Pre-Processing Techniques and Machine Learning Models [0.0]
We present a comparative analysis of five machine learning models for the prediction of epileptic seizures using EEG data.
The results of our analysis demonstrate the performance of each model in terms of accuracy.
The ET model exhibited the best performance with an accuracy of 99.29%.
arXiv Detail & Related papers (2023-08-06T08:50:08Z) - Comparative Analysis of State-of-the-Art Deep Learning Models for
Detecting COVID-19 Lung Infection from Chest X-Ray Images [3.829821362301428]
This paper evaluates the applicability of the recent top ten state-of-the-art Deep Convolutional Neural Networks (CNNs) for automatically detecting COVID-19 infection using chest X-ray images.
Our trained models MobileNet, EfficentNet, and InceptionV3 achieved a classification average accuracy of 95%, 95%, and 94%, respectively.
arXiv Detail & Related papers (2022-07-01T02:23:23Z) - A Novel Implementation of Machine Learning for the Efficient,
Explainable Diagnosis of COVID-19 from Chest CT [0.0]
The aim of this study was to take a novel approach in the machine learning-based detection of COVID-19 from chest CT scans.
The proposed model attained an overall accuracy of 0.927 and a sensitivity of 0.958.
arXiv Detail & Related papers (2022-06-15T18:35:22Z) - On the explainability of hospitalization prediction on a large COVID-19
patient dataset [45.82374977939355]
We develop various AI models to predict hospitalization on a large (over 110$k$) cohort of COVID-19 positive-tested US patients.
Despite high data unbalance, the models reach average precision 0.96-0.98 (0.75-0.85), recall 0.96-0.98 (0.74-0.85), and $F_score 0.97-0.98 (0.79-0.83) on the non-hospitalized (or hospitalized) class.
arXiv Detail & Related papers (2021-10-28T10:23:38Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
Deep learning models have been developed to identify COVID-19 from chest X-rays.
Results have been exceptional when training and testing on open-source data.
Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem.
arXiv Detail & Related papers (2021-09-14T10:59:11Z) - Systematic investigation into generalization of COVID-19 CT deep
learning models with Gabor ensemble for lung involvement scoring [9.94980188821453]
This study investigates the generalizability of key published models using the publicly available COVID-19 Computed Tomography data.
We then assess the predictive ability of these models for COVID-19 severity using an independent new dataset.
arXiv Detail & Related papers (2021-04-20T03:49:48Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
Deep learning (DL) classification models were trained to identify COVID-19-positive patients on 3D computed tomography (CT) datasets from different countries.
We trained nine identical DL-based classification models by using combinations of the datasets with a 72% train, 8% validation, and 20% test data split.
The models trained on multiple datasets and evaluated on a test set from one of the datasets used for training performed better.
arXiv Detail & Related papers (2021-02-18T21:14:52Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Individualized Prediction of COVID-19 Adverse outcomes with MLHO [9.197411456718708]
We developed an end-to-end Machine Learning framework that leverages iterative feature and algorithm selection to predict Health outcomes.
We modeled the four adverse outcomes utilizing about 600 features representing patients' pre-COVID health records and demographics.
Our results demonstrated that while demographic variables are important predictors of adverse outcomes after a COVID-19 infection, the incorporation of the past clinical records are vital for a reliable prediction model.
arXiv Detail & Related papers (2020-08-10T02:44:52Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.