Task-Agnostic Privacy-Preserving Representation Learning for Federated Learning Against Attribute Inference Attacks
- URL: http://arxiv.org/abs/2312.06989v1
- Date: Tue, 12 Dec 2023 05:17:34 GMT
- Title: Task-Agnostic Privacy-Preserving Representation Learning for Federated Learning Against Attribute Inference Attacks
- Authors: Caridad Arroyo Arevalo, Sayedeh Leila Noorbakhsh, Yun Dong, Yuan Hong, Binghui Wang,
- Abstract summary: Federated learning (FL) has been widely studied recently due to its property to collaboratively train data from different devices without sharing the raw data.
Recent studies show that an adversary can still be possible to infer private information about devices' data, e.g., sensitive attributes such as income, race, and sexual orientation.
We develop a task-agnostic privacy-preserving presentation learning method for FL (bf TAPPFL) against attribute inference attacks.
- Score: 21.83308540799076
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated learning (FL) has been widely studied recently due to its property to collaboratively train data from different devices without sharing the raw data. Nevertheless, recent studies show that an adversary can still be possible to infer private information about devices' data, e.g., sensitive attributes such as income, race, and sexual orientation. To mitigate the attribute inference attacks, various existing privacy-preserving FL methods can be adopted/adapted. However, all these existing methods have key limitations: they need to know the FL task in advance, or have intolerable computational overheads or utility losses, or do not have provable privacy guarantees. We address these issues and design a task-agnostic privacy-preserving presentation learning method for FL ({\bf TAPPFL}) against attribute inference attacks. TAPPFL is formulated via information theory. Specifically, TAPPFL has two mutual information goals, where one goal learns task-agnostic data representations that contain the least information about the private attribute in each device's data, and the other goal ensures the learnt data representations include as much information as possible about the device data to maintain FL utility. We also derive privacy guarantees of TAPPFL against worst-case attribute inference attacks, as well as the inherent tradeoff between utility preservation and privacy protection. Extensive results on multiple datasets and applications validate the effectiveness of TAPPFL to protect data privacy, maintain the FL utility, and be efficient as well. Experimental results also show that TAPPFL outperforms the existing defenses\footnote{Source code and full version: \url{https://github.com/TAPPFL}}.
Related papers
- Privacy Attack in Federated Learning is Not Easy: An Experimental Study [5.065947993017158]
Federated learning (FL) is an emerging distributed machine learning paradigm proposed for privacy preservation.
Recent studies have indicated that FL cannot entirely guarantee privacy protection.
It remains uncertain whether privacy attack FL algorithms are effective in realistic federated environments.
arXiv Detail & Related papers (2024-09-28T10:06:34Z) - UIFV: Data Reconstruction Attack in Vertical Federated Learning [5.404398887781436]
Vertical Federated Learning (VFL) facilitates collaborative machine learning without the need for participants to share raw private data.
Recent studies have revealed privacy risks where adversaries might reconstruct sensitive features through data leakage during the learning process.
Our work exposes severe privacy vulnerabilities within VFL systems that pose real threats to practical VFL applications.
arXiv Detail & Related papers (2024-06-18T13:18:52Z) - Federated Learning Privacy: Attacks, Defenses, Applications, and Policy Landscape - A Survey [27.859861825159342]
Deep learning has shown incredible potential across a vast array of tasks.
Recent concerns on privacy have further highlighted challenges for accessing such data.
Federated learning has emerged as an important privacy-preserving technology.
arXiv Detail & Related papers (2024-05-06T16:55:20Z) - Ungeneralizable Examples [70.76487163068109]
Current approaches to creating unlearnable data involve incorporating small, specially designed noises.
We extend the concept of unlearnable data to conditional data learnability and introduce textbfUntextbfGeneralizable textbfExamples (UGEs)
UGEs exhibit learnability for authorized users while maintaining unlearnability for potential hackers.
arXiv Detail & Related papers (2024-04-22T09:29:14Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - UFed-GAN: A Secure Federated Learning Framework with Constrained
Computation and Unlabeled Data [50.13595312140533]
We propose a novel framework of UFed-GAN: Unsupervised Federated Generative Adversarial Network, which can capture user-side data distribution without local classification training.
Our experimental results demonstrate the strong potential of UFed-GAN in addressing limited computational resources and unlabeled data while preserving privacy.
arXiv Detail & Related papers (2023-08-10T22:52:13Z) - Fair Differentially Private Federated Learning Framework [0.0]
Federated learning (FL) is a distributed machine learning strategy that enables participants to collaborate and train a shared model without sharing their individual datasets.
Privacy and fairness are crucial considerations in FL.
This paper presents a framework that addresses the challenges of generating a fair global model without validation data and creating a globally private differential model.
arXiv Detail & Related papers (2023-05-23T09:58:48Z) - Mutual Information Regularization for Vertical Federated Learning [6.458078197870505]
Vertical Federated Learning (VFL) is widely utilized in real-world applications to enable collaborative learning while protecting data privacy and safety.
Previous works show that parties without labels (passive parties) in VFL can infer the sensitive label information owned by the party with labels (active party) or execute backdoor attacks to VFL.
We propose a new general defense method which limits the mutual information between private raw data, including both features and labels, and intermediate outputs to achieve a better trade-off between model utility and privacy.
arXiv Detail & Related papers (2023-01-01T02:03:34Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - Provable Defense against Privacy Leakage in Federated Learning from
Representation Perspective [47.23145404191034]
Federated learning (FL) is a popular distributed learning framework that can reduce privacy risks by not explicitly sharing private data.
Recent works demonstrated that sharing model updates makes FL vulnerable to inference attacks.
We show our key observation that the data representation leakage from gradients is the essential cause of privacy leakage in FL.
arXiv Detail & Related papers (2020-12-08T20:42:12Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
We conduct the first comprehensive survey on this topic.
Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic.
arXiv Detail & Related papers (2020-12-07T12:11:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.