論文の概要: On Information Geometry and Iterative Optimization in Model Compression: Operator Factorization
- arxiv url: http://arxiv.org/abs/2507.09428v1
- Date: Sat, 12 Jul 2025 23:39:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:23.169016
- Title: On Information Geometry and Iterative Optimization in Model Compression: Operator Factorization
- Title(参考訳): モデル圧縮における情報幾何学と反復最適化について:演算子因子化
- Authors: Zakhar Shumaylov, Vasileios Tsiaras, Yannis Stylianou,
- Abstract要約: 我々は、多くのモデル圧縮手法が、この射影に対する情報分岐を暗黙的に近似するものとして理解することができると論じる。
ソフトランク制約を受けるニューラルネットワークのトレーニングにおける反復特異値しきい値の収束性を証明する。
- 参考スコア(独自算出の注目度): 5.952537659103525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ever-increasing parameter counts of deep learning models necessitate effective compression techniques for deployment on resource-constrained devices. This paper explores the application of information geometry, the study of density-induced metrics on parameter spaces, to analyze existing methods within the space of model compression, primarily focusing on operator factorization. Adopting this perspective highlights the core challenge: defining an optimal low-compute submanifold (or subset) and projecting onto it. We argue that many successful model compression approaches can be understood as implicitly approximating information divergences for this projection. We highlight that when compressing a pre-trained model, using information divergences is paramount for achieving improved zero-shot accuracy, yet this may no longer be the case when the model is fine-tuned. In such scenarios, trainability of bottlenecked models turns out to be far more important for achieving high compression ratios with minimal performance degradation, necessitating adoption of iterative methods. In this context, we prove convergence of iterative singular value thresholding for training neural networks subject to a soft rank constraint. To further illustrate the utility of this perspective, we showcase how simple modifications to existing methods through softer rank reduction result in improved performance under fixed compression rates.
- Abstract(参考訳): ディープラーニングモデルのパラメータの絶え間ない増加は、リソース制約のあるデバイスへのデプロイに効果的な圧縮技術を必要とする。
本稿では,パラメータ空間上での密度依存性の測定手法である情報幾何の応用について検討し,主に演算子分解に着目したモデル圧縮空間における既存手法の解析を行う。
最適な低計算のサブマニフォールド(あるいはサブセット)を定義し、それを投影することです。
我々は、多くのモデル圧縮手法が、この射影に対する情報分岐を暗黙的に近似するものとして理解することができると論じる。
事前訓練されたモデルを圧縮する場合、ゼロショット精度を向上させるために情報分散を利用することが最重要であるが、モデルが微調整された場合、もはやそうではない可能性がある。
このようなシナリオでは、ボトルネック付きモデルのトレーニング性は、パフォーマンスの低下を最小限に抑えながら高い圧縮比を達成するためにはるかに重要であり、反復的手法を採用する必要がある。
この文脈では、ソフトランク制約を受けるニューラルネットワークのトレーニングのための反復特異値しきい値の収束を証明している。
この観点から, 従来手法のソフト化による簡易な修正により, 一定の圧縮速度で性能が向上することを示す。
関連論文リスト
- Unified Scaling Laws for Compressed Representations [69.72517034565467]
各種圧縮表現上でのトレーニングにおいて,統合スケーリングフレームワークがモデル性能を正確に予測できるかどうかを検討する。
我々の主な発見は、単純な「容量」計量が存在するという理論と経験の両方を実証することである。
我々は、圧縮されたフォーマットの精度を直接比較し、スパース量子化されたフォーマットのトレーニングのためのより良いアルゴリズムを導出するために、定式化を拡張した。
論文 参考訳(メタデータ) (2025-06-02T16:52:51Z) - Choose Your Model Size: Any Compression by a Single Gradient Descent [9.074689052563878]
イテレーティブ・プルーニング(ACIP)による圧縮について紹介する。
ACIPは、単一の勾配降下ランから圧縮性能トレードオフを決定するアルゴリズム的なアプローチである。
本稿では,ACIPが共通量子化に基づく圧縮手法をシームレスに補完することを示す。
論文 参考訳(メタデータ) (2025-02-03T18:40:58Z) - Generalized Nested Latent Variable Models for Lossy Coding applied to Wind Turbine Scenarios [14.48369551534582]
学習に基づくアプローチは、圧縮率と再構成された画質の妥協を最小化する。
成功したテクニックは、2レベルネストされた潜伏変数モデル内で機能するディープハイパープライアの導入である。
本稿では,マルコフ連鎖構造を持つ一般化Lレベルネスト生成モデルを設計することによって,この概念を拡張した。
論文 参考訳(メタデータ) (2024-06-10T11:00:26Z) - Rethinking Compression: Reduced Order Modelling of Latent Features in
Large Language Models [9.91972450276408]
本稿では,Large Language Models (LLMs) のパラメトリックおよび実用的な圧縮に対して,低次モデリングに基づく革新的なアプローチを提案する。
本手法は, 行列分解を利用したモデル圧縮の顕著な進歩を示し, 最先端の構造化プルーニング法よりも優れた有効性を示した。
論文 参考訳(メタデータ) (2023-12-12T07:56:57Z) - Efficient Compression of Overparameterized Deep Models through
Low-Dimensional Learning Dynamics [10.673414267895355]
本稿ではパラメータ化モデルを用いた新しい圧縮手法を提案する。
本アルゴリズムは, 一般化を損なうことなく, トレーニング効率を2倍以上に向上させる。
論文 参考訳(メタデータ) (2023-11-08T23:57:03Z) - Uncovering the Hidden Cost of Model Compression [43.62624133952414]
視覚プロンプティングは、コンピュータビジョンにおける伝達学習の重要な方法として登場した。
モデル圧縮は視覚的プロンプトベース転送の性能に有害である。
しかし、量子化によってモデルが圧縮されるとき、キャリブレーションに対する負の効果は存在しない。
論文 参考訳(メタデータ) (2023-08-29T01:47:49Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
本稿では,空間アグリゲーション機能の拡張に焦点をあて,動的カーネルベースの変換符号化を提案する。
提案したアダプティブアグリゲーションはカーネルオフセットを生成し、コンテント条件付き範囲の有効な情報をキャプチャして変換を支援する。
実験により,本手法は,最先端の学習手法と比較して,3つのベンチマークにおいて高い速度歪み性能が得られることを示した。
論文 参考訳(メタデータ) (2023-08-17T01:34:51Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
我々は、本質的にスパースモデルにつながるニューラルネットワークの新しい重みパラメータ化であるPowerpropagationを紹介した。
この方法で訓練されたモデルは同様の性能を示すが、0で明らかに高い密度の分布を持ち、より多くのパラメータを安全に刈り取ることができる。
ここでは、Powerpropagationと従来のウェイトプルーニング技術と、最近の最先端スパース・トゥ・スパースアルゴリズムを組み合わせることで、ImageNetベンチマークで優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-10-01T10:03:57Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。