論文の概要: ScribblePrompt: Fast and Flexible Interactive Segmentation for Any Biomedical Image
- arxiv url: http://arxiv.org/abs/2312.07381v3
- Date: Tue, 16 Jul 2024 21:21:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 22:58:48.779164
- Title: ScribblePrompt: Fast and Flexible Interactive Segmentation for Any Biomedical Image
- Title(参考訳): ScribblePrompt:どんなバイオメディカル画像でも高速でフレキシブルなインタラクティブセグメンテーション
- Authors: Hallee E. Wong, Marianne Rakic, John Guttag, Adrian V. Dalca,
- Abstract要約: 本稿では,バイオメディカルイメージングのためのフレキシブルニューラルネットワークを用いたインタラクティブセグメンテーションツールであるemphScribblePromptを紹介する。
ドメインの専門家によるユーザスタディでは、ScribblePromptはアノテーションの時間を28%削減し、Diceを15%改善した。
インタラクティブなデモでScribblePromptを紹介し、コードを提供し、https://scribbleprompt.csail.mit.eduでscribbleアノテーションのデータセットをリリースします。
- 参考スコア(独自算出の注目度): 4.076537350106898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biomedical image segmentation is a crucial part of both scientific research and clinical care. With enough labelled data, deep learning models can be trained to accurately automate specific biomedical image segmentation tasks. However, manually segmenting images to create training data is highly labor intensive and requires domain expertise. We present \emph{ScribblePrompt}, a flexible neural network based interactive segmentation tool for biomedical imaging that enables human annotators to segment previously unseen structures using scribbles, clicks, and bounding boxes. Through rigorous quantitative experiments, we demonstrate that given comparable amounts of interaction, ScribblePrompt produces more accurate segmentations than previous methods on datasets unseen during training. In a user study with domain experts, ScribblePrompt reduced annotation time by 28% while improving Dice by 15% compared to the next best method. ScribblePrompt's success rests on a set of careful design decisions. These include a training strategy that incorporates both a highly diverse set of images and tasks, novel algorithms for simulated user interactions and labels, and a network that enables fast inference. We showcase ScribblePrompt in an interactive demo, provide code, and release a dataset of scribble annotations at https://scribbleprompt.csail.mit.edu
- Abstract(参考訳): バイオメディカルイメージセグメンテーションは、科学研究と臨床医療の両方において重要な部分である。
十分なラベル付きデータによって、ディープラーニングモデルは、特定のバイオメディカルイメージセグメンテーションタスクを正確に自動化するように訓練することができる。
しかし、トレーニングデータを作成するために手動で画像のセグメンテーションを行うのは、非常に労力がかかり、ドメインの専門知識を必要とする。
バイオメディカルイメージングのためのフレキシブルニューラルネットワークベースのインタラクティブセグメンテーションツールである \emph{ScribblePrompt} を紹介した。
厳密な定量的実験により、ScribblePromptはトレーニング中に見つからないデータセットの従来の方法よりも正確なセグメンテーションを生成することを示した。
ドメインの専門家によるユーザスタディでは、ScribblePromptはアノテーションの時間を28%削減し、Diceを15%改善した。
ScribblePromptの成功は、注意深い設計決定にかかっている。
これには、非常に多様なイメージとタスクのセット、ユーザインタラクションとラベルをシミュレートする新しいアルゴリズム、高速な推論を可能にするネットワークを含むトレーニング戦略が含まれる。
インタラクティブなデモでScribblePromptを紹介し、コードを提供し、https://scribbleprompt.csail.mit.eduでscribbleアノテーションのデータセットをリリースする。
関連論文リスト
- Microscopy Image Segmentation via Point and Shape Regularized Data
Synthesis [9.47802391546853]
合成学習データを用いた顕微鏡画像セグメンテーションのための統一パイプラインを構築した。
本フレームワークは,濃密なラベルを持つ高精度な顕微鏡画像で訓練されたモデルと同等の結果が得られる。
論文 参考訳(メタデータ) (2023-08-18T22:00:53Z) - Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
従来の深層学習に基づく自動セグメンテーションは、グランドトラストラベルによる広範なトレーニングデータを必要とする。
ラベル付きデータに頼らずに複数の組織を正確にセグメンテーションするマルチアトラスセグメンテーションに基づく新しい手法を提案する。
提案手法では,3次元画像登録のためのカスケード深層学習ネットワークを用いて,移動画像への小さなインクリメンタルな変形を計算し,それを固定画像と正確に整合させる。
論文 参考訳(メタデータ) (2023-07-07T13:17:12Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Pseudo-label Guided Cross-video Pixel Contrast for Robotic Surgical
Scene Segmentation with Limited Annotations [72.15956198507281]
シーンセグメンテーションを促進するために,新しい擬似ラベル付きクロスビデオコントラスト学習法であるPGV-CLを提案する。
本研究では,ロボット外科手術データセットEndoVis18と白内障手術データセットCaDISについて検討した。
論文 参考訳(メタデータ) (2022-07-20T05:42:19Z) - Suggestive Annotation of Brain MR Images with Gradient-guided Sampling [12.928940875474378]
そこで我々は,脳MRI画像に対する効率的なアノテーションフレームワークを提案し,アノテートを行うための情報的サンプル画像を提案する。
脳腫瘍の分節と全脳の分節という2つの異なる脳画像解析タスクの枠組みを評価する。
提案フレームワークは,手動アノテーションのコストを削減し,医用画像アプリケーションにおけるデータ効率を向上させるための有望な方法を示す。
論文 参考訳(メタデータ) (2022-06-02T12:23:44Z) - Voice-assisted Image Labelling for Endoscopic Ultrasound Classification
using Neural Networks [48.732863591145964]
本稿では,臨床医が提示した生音声からのEUS画像にラベルを付けるマルチモーダル畳み込みニューラルネットワークアーキテクチャを提案する。
その結果,5つのラベルを持つデータセットにおいて,画像レベルでの予測精度は76%であった。
論文 参考訳(メタデータ) (2021-10-12T21:22:24Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
セグメンテーションネットワークを訓練する学生・教師のアプローチに基づく,新しい不確実性誘導半教師学習を提案する。
提案するフレームワークは,様々な画像モダリティにまたがるバイオメディカルイメージセグメンテーションに有効である。
論文 参考訳(メタデータ) (2021-03-02T23:14:25Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Going to Extremes: Weakly Supervised Medical Image Segmentation [12.700841704699615]
セグメンテーションモデルをトレーニングするために、極端点クリックという形で最小限のユーザインタラクションを使うことを提案する。
ランダムウォーカアルゴリズムを利用した極端点に基づいて初期セグメンテーションを生成する。
この初期セグメンテーションは、完全な畳み込みネットワークを訓練するためにノイズの多い監視信号として使用される。
論文 参考訳(メタデータ) (2020-09-25T00:28:10Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
本研究では、畳み込みニューラルネットワークによるセグメンテーションを改善するために、オートエンコーダ抽出機能の可能性を検討する。
コンボリューション・オートエンコーダを用いてラベルのないデータから特徴を抽出し,CT画像における3次元肝セグメンテーションの目標タスクを実行するために,マルチスケールの完全畳み込みCNNを用いた。
論文 参考訳(メタデータ) (2020-03-17T20:20:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。