Non-contact Multimodal Indoor Human Monitoring Systems: A Survey
- URL: http://arxiv.org/abs/2312.07601v1
- Date: Mon, 11 Dec 2023 14:57:12 GMT
- Title: Non-contact Multimodal Indoor Human Monitoring Systems: A Survey
- Authors: Le Ngu Nguyen and Praneeth Susarla and Anirban Mukherjee and Manuel
Lage Ca\~nellas and Constantino \'Alvarez Casado and Xiaoting Wu and
Olli~Silv\'en and Dinesh Babu Jayagopi and Miguel Bordallo L\'opez
- Abstract summary: We present a comprehensive survey of multimodal approaches for indoor human monitoring systems.
Our survey primarily highlights non-contact technologies, particularly cameras and radio devices.
We emphasize their critical role in enhancing the quality of elderly care, offering valuable insights into the development of non-contact monitoring solutions.
- Score: 4.048305170077075
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Indoor human monitoring systems leverage a wide range of sensors, including
cameras, radio devices, and inertial measurement units, to collect extensive
data from users and the environment. These sensors contribute diverse data
modalities, such as video feeds from cameras, received signal strength
indicators and channel state information from WiFi devices, and three-axis
acceleration data from inertial measurement units. In this context, we present
a comprehensive survey of multimodal approaches for indoor human monitoring
systems, with a specific focus on their relevance in elderly care. Our survey
primarily highlights non-contact technologies, particularly cameras and radio
devices, as key components in the development of indoor human monitoring
systems. Throughout this article, we explore well-established techniques for
extracting features from multimodal data sources. Our exploration extends to
methodologies for fusing these features and harnessing multiple modalities to
improve the accuracy and robustness of machine learning models. Furthermore, we
conduct comparative analysis across different data modalities in diverse human
monitoring tasks and undertake a comprehensive examination of existing
multimodal datasets. This extensive survey not only highlights the significance
of indoor human monitoring systems but also affirms their versatile
applications. In particular, we emphasize their critical role in enhancing the
quality of elderly care, offering valuable insights into the development of
non-contact monitoring solutions applicable to the needs of aging populations.
Related papers
- Unsupervised Multimodal Fusion of In-process Sensor Data for Advanced Manufacturing Process Monitoring [0.0]
This paper presents a novel approach to multimodal sensor data fusion in manufacturing processes.
We leverage contrastive learning techniques to correlate different data modalities without the need for labeled data.
Our approach facilitates downstream tasks such as process control, anomaly detection, and quality assurance.
arXiv Detail & Related papers (2024-10-29T21:52:04Z) - Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
This survey systematically reviews the emerging field of Remote Sensing Foundation Models (RSFMs)
It begins with an outline of their motivation and background, followed by an introduction of their foundational concepts.
We benchmark these models against publicly available datasets, discuss existing challenges, and propose future research directions.
arXiv Detail & Related papers (2024-10-22T01:08:21Z) - Scaling Wearable Foundation Models [54.93979158708164]
We investigate the scaling properties of sensor foundation models across compute, data, and model size.
Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM.
Our results establish the scaling laws of LSM for tasks such as imputation, extrapolation, both across time and sensor modalities.
arXiv Detail & Related papers (2024-10-17T15:08:21Z) - Large Language Model-empowered multimodal strain sensory system for shape recognition, monitoring, and human interaction of tensegrity [2.323663950503941]
A tensegrity-based system is a promising approach for dynamic exploration of uneven and unpredictable environments.
Here, we introduce a 6-strut tensegrity integrate with 24 multimodal strain sensors by leveraging both deep learning model and large language models.
The tensegrity autonomously enables to send data to iPhone for wireless monitoring and provides data analysis, explanation, prediction, and suggestions to human.
arXiv Detail & Related papers (2024-06-11T06:26:04Z) - Daily Physical Activity Monitoring -- Adaptive Learning from Multi-source Motion Sensor Data [17.604797095380114]
In healthcare applications, there is a growing need to develop machine learning models that use data from a single source, such as from a wrist wearable device.
However, the limitation of using single-source data often compromises the model's accuracy, as it fails to capture the full scope of human activities.
We introduce a transfer learning framework that optimize machine learning models for everyday applications by leveraging multi-source data collected in a laboratory setting.
arXiv Detail & Related papers (2024-05-26T01:08:28Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
This survey presents a comprehensive analysis of data augmentation techniques in human-centric vision tasks.
It delves into a wide range of research areas including person ReID, human parsing, human pose estimation, and pedestrian detection.
Our work categorizes data augmentation methods into two main types: data generation and data perturbation.
arXiv Detail & Related papers (2024-03-13T16:05:18Z) - Benchmarking high-fidelity pedestrian tracking systems for research,
real-time monitoring and crowd control [55.41644538483948]
High-fidelity pedestrian tracking in real-life conditions has been an important tool in fundamental crowd dynamics research.
As this technology advances, it is becoming increasingly useful also in society.
To successfully employ pedestrian tracking techniques in research and technology, it is crucial to validate and benchmark them for accuracy.
We present and discuss a benchmark suite, towards an open standard in the community, for privacy-respectful pedestrian tracking techniques.
arXiv Detail & Related papers (2021-08-26T11:45:26Z) - Domain and Modality Gaps for LiDAR-based Person Detection on Mobile
Robots [91.01747068273666]
This paper studies existing LiDAR-based person detectors with a particular focus on mobile robot scenarios.
Experiments revolve around the domain gap between driving and mobile robot scenarios, as well as the modality gap between 3D and 2D LiDAR sensors.
Results provide practical insights into LiDAR-based person detection and facilitate informed decisions for relevant mobile robot designs and applications.
arXiv Detail & Related papers (2021-06-21T16:35:49Z) - Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review [0.0]
Anomaly detection is concerned with identifying data patterns that deviate remarkably from the expected behaviour.
This is an important research problem, due to its broad set of application domains, from data analysis to e-health, cybersecurity, predictive maintenance, fault prevention, and industrial automation.
We review state-of-the-art methods that may be employed to detect anomalies in the specific area of sensor systems.
arXiv Detail & Related papers (2020-10-27T09:56:16Z) - From Handcrafted to Deep Features for Pedestrian Detection: A Survey [148.35460817092908]
Pedestrian detection is an important but challenging problem in computer vision.
Over the past decade, significant improvement has been witnessed with the help of handcrafted features and deep features.
In addition to single-spectral pedestrian detection, we also review multi-spectral pedestrian detection.
arXiv Detail & Related papers (2020-10-01T14:51:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.