Harnessing Retrieval-Augmented Generation (RAG) for Uncovering Knowledge
Gaps
- URL: http://arxiv.org/abs/2312.07796v1
- Date: Tue, 12 Dec 2023 23:22:57 GMT
- Title: Harnessing Retrieval-Augmented Generation (RAG) for Uncovering Knowledge
Gaps
- Authors: Joan Figuerola Hurtado
- Abstract summary: The study demonstrates the effectiveness of the RAG system in generating relevant suggestions with a consistent accuracy of 93%.
The results highlight the value of identifying and understanding knowledge gaps to guide future endeavours.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper presents a methodology for uncovering knowledge gaps on the
internet using the Retrieval Augmented Generation (RAG) model. By simulating
user search behaviour, the RAG system identifies and addresses gaps in
information retrieval systems. The study demonstrates the effectiveness of the
RAG system in generating relevant suggestions with a consistent accuracy of
93%. The methodology can be applied in various fields such as scientific
discovery, educational enhancement, research development, market analysis,
search engine optimisation, and content development. The results highlight the
value of identifying and understanding knowledge gaps to guide future
endeavours.
Related papers
- Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.36487127683053]
Retrieval-Augmented Generation (RAG) is an advanced technique designed to address the challenges of Artificial Intelligence-Generated Content (AIGC)
RAG provides reliable and up-to-date external knowledge, reduces hallucinations, and ensures relevant context across a wide range of tasks.
Despite RAG's success and potential, recent studies have shown that the RAG paradigm also introduces new risks, including privacy concerns, adversarial attacks, and accountability issues.
arXiv Detail & Related papers (2025-02-08T06:50:47Z) - A Retrieval-Augmented Generation Framework for Academic Literature Navigation in Data Science [2.5398014196797614]
This paper presents an enhanced Retrieval-Augmented Generation application, an artificial intelligence (AI)-based system designed to assist data scientists in accessing precise and contextually relevant academic resources.
The AI-powered application integrates advanced techniques, including the GeneRation Of BIbliographic Data (GROBID) technique for extracting information.
A comprehensive evaluation using the Retrieval-Augmented Generation Assessment System (RAGAS) framework demonstrates substantial improvements in key metrics.
arXiv Detail & Related papers (2024-12-19T21:14:54Z) - Towards Knowledge Checking in Retrieval-augmented Generation: A Representation Perspective [48.40768048080928]
Retrieval-Augmented Generation (RAG) systems have shown promise in enhancing the performance of Large Language Models (LLMs)
This work aims to provide a systematic study on knowledge checking in RAG systems.
arXiv Detail & Related papers (2024-11-21T20:39:13Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future Directions [0.0]
RAG combines retrieval mechanisms with generative language models to enhance the accuracy of outputs.
Recent research breakthroughs are discussed, highlighting novel methods for improving retrieval efficiency.
Future research directions are proposed, focusing on improving the robustness of RAG models.
arXiv Detail & Related papers (2024-10-03T22:29:47Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG) has quickly grown into a pivotal paradigm in the development of Large Language Models (LLMs)
We propose a unified framework that assesses the trustworthiness of RAG systems across six key dimensions: factuality, robustness, fairness, transparency, accountability, and privacy.
arXiv Detail & Related papers (2024-09-16T09:06:44Z) - WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs [10.380692079063467]
We propose WeKnow-RAG, which integrates Web search and Knowledge Graphs into a "Retrieval-Augmented Generation (RAG)" system.
First, the accuracy and reliability of LLM responses are improved by combining the structured representation of Knowledge Graphs with the flexibility of dense vector retrieval.
Our approach effectively balances the efficiency and accuracy of information retrieval, thus improving the overall retrieval process.
arXiv Detail & Related papers (2024-08-14T15:19:16Z) - A Study on the Implementation Method of an Agent-Based Advanced RAG System Using Graph [0.0]
This study implements an advanced RAG system based on Graph technology to develop high-quality generative AI services.
It employs LangGraph to evaluate the reliability of retrieved information and synthesizes diverse data to generate more accurate and enhanced responses.
arXiv Detail & Related papers (2024-07-29T13:26:43Z) - Evaluating Generative Ad Hoc Information Retrieval [58.800799175084286]
generative retrieval systems often directly return a grounded generated text as a response to a query.
Quantifying the utility of the textual responses is essential for appropriately evaluating such generative ad hoc retrieval.
arXiv Detail & Related papers (2023-11-08T14:05:00Z) - Knowledge-augmented Deep Learning and Its Applications: A Survey [60.221292040710885]
knowledge-augmented deep learning (KADL) aims to identify domain knowledge and integrate it into deep models for data-efficient, generalizable, and interpretable deep learning.
This survey subsumes existing works and offers a bird's-eye view of research in the general area of knowledge-augmented deep learning.
arXiv Detail & Related papers (2022-11-30T03:44:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.