Active learning with biased non-response to label requests
- URL: http://arxiv.org/abs/2312.08150v2
- Date: Mon, 11 Mar 2024 09:43:47 GMT
- Title: Active learning with biased non-response to label requests
- Authors: Thomas Robinson, Niek Tax, Richard Mudd, and Ido Guy
- Abstract summary: Non-response to label requests can impact active learning's effectiveness in real-world contexts.
We conceptualise this degradation by considering the type of non-response present in the data.
We propose a cost-based correction to the sampling strategy to mitigate the impact of biased non-response.
- Score: 5.940553820027303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning can improve the efficiency of training prediction models by
identifying the most informative new labels to acquire. However, non-response
to label requests can impact active learning's effectiveness in real-world
contexts. We conceptualise this degradation by considering the type of
non-response present in the data, demonstrating that biased non-response is
particularly detrimental to model performance. We argue that biased
non-response is likely in contexts where the labelling process, by nature,
relies on user interactions. To mitigate the impact of biased non-response, we
propose a cost-based correction to the sampling strategy--the Upper Confidence
Bound of the Expected Utility (UCB-EU)--that can, plausibly, be applied to any
active learning algorithm. Through experiments, we demonstrate that our method
successfully reduces the harm from labelling non-response in many settings.
However, we also characterise settings where the non-response bias in the
annotations remains detrimental under UCB-EU for specific sampling methods and
data generating processes. Finally, we evaluate our method on a real-world
dataset from an e-commerce platform. We show that UCB-EU yields substantial
performance improvements to conversion models that are trained on clicked
impressions. Most generally, this research serves to both better conceptualise
the interplay between types of non-response and model improvements via active
learning, and to provide a practical, easy-to-implement correction that
mitigates model degradation.
Related papers
- Alternate Preference Optimization for Unlearning Factual Knowledge in Large Language Models [2.0962367975513496]
Machine unlearning aims to efficiently eliminate the influence of specific training data, known as the forget set, from the model.
Existing unlearning methods rely solely on negative feedback to suppress responses related to the forget set.
We propose a novel approach called Alternate Preference Optimization (AltPO), which combines negative feedback with in-domain positive feedback on the forget set.
arXiv Detail & Related papers (2024-09-20T13:05:07Z) - Unsupervised Transfer Learning via Adversarial Contrastive Training [3.227277661633986]
We propose a novel unsupervised transfer learning approach using adversarial contrastive training (ACT)
Our experimental results demonstrate outstanding classification accuracy with both fine-tuned linear probe and K-NN protocol across various datasets.
arXiv Detail & Related papers (2024-08-16T05:11:52Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
Recent research has begun to approach large language models (LLMs) unlearning via gradient ascent (GA)
Despite their simplicity and efficiency, we suggest that GA-based methods face the propensity towards excessive unlearning.
We propose several controlling methods that can regulate the extent of excessive unlearning.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
We present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss.
Our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks.
arXiv Detail & Related papers (2022-12-20T19:29:37Z) - WSLRec: Weakly Supervised Learning for Neural Sequential Recommendation
Models [24.455665093145818]
We propose a novel model-agnostic training approach called WSLRec, which adopts a three-stage framework: pre-training, top-$k$ mining, intrinsic and fine-tuning.
WSLRec resolves the incompleteness problem by pre-training models on extra weak supervisions from model-free methods like BR and ItemCF, while resolving the inaccuracy problem by leveraging the top-$k$ mining to screen out reliable user-item relevance from weak supervisions for fine-tuning.
arXiv Detail & Related papers (2022-02-28T08:55:12Z) - Agree to Disagree: Diversity through Disagreement for Better
Transferability [54.308327969778155]
We propose D-BAT (Diversity-By-disAgreement Training), which enforces agreement among the models on the training data.
We show how D-BAT naturally emerges from the notion of generalized discrepancy.
arXiv Detail & Related papers (2022-02-09T12:03:02Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Message Passing Adaptive Resonance Theory for Online Active
Semi-supervised Learning [30.19936050747407]
We propose Message Passing Adaptive Resonance Theory (MPART) for online active semi-supervised learning.
MPART infers the class of unlabeled data and selects informative and representative samples through message passing between nodes on the topological graph.
We evaluate our model with comparable query selection strategies and frequencies, showing that MPART significantly outperforms the competitive models in online active learning environments.
arXiv Detail & Related papers (2020-12-02T14:14:42Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.