論文の概要: Double Machine Learning for Static Panel Models with Fixed Effects
- arxiv url: http://arxiv.org/abs/2312.08174v3
- Date: Wed, 15 May 2024 16:15:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-05-16 18:12:17.950449
- Title: Double Machine Learning for Static Panel Models with Fixed Effects
- Title(参考訳): 固定効果を有する静的パネルモデルのダブル機械学習
- Authors: Paul Clarke, Annalivia Polselli,
- Abstract要約: 我々は、二重機械学習(DML)を用いて、共同創設者の高次元および非線形関数を近似する。
線形モデルに対する相関ランダム効果,内部群,第1ディファレンス推定を適用した新しい推定器を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in causal inference have seen the development of methods which make use of the predictive power of machine learning algorithms. In this paper, we use double machine learning (DML) (Chernozhukov et al., 2018) to approximate high-dimensional and non-linear nuisance functions of the confounders to make inferences about the effects of policy interventions from panel data. We propose new estimators by adapting correlated random effects, within-group and first-difference estimation for linear models to an extension of Robinson (1988)'s partially linear regression model to static panel data models with individual fixed effects and unspecified non-linear confounder effects. Using Monte Carlo simulations, we compare the relative performance of different machine learning algorithms and find that conventional least squares estimators performs well when the data generating process is mildly non-linear and smooth, but there are substantial performance gains with DML in terms of bias reduction when the true effect of the regressors is non-linear and discontinuous. However, inference based on individual learners can lead to badly biased inference. Finally, we provide an illustrative example of DML for observational panel data showing the impact of the introduction of the minimum wage on voting behavior in the UK.
- Abstract(参考訳): 因果推論の最近の進歩は、機械学習アルゴリズムの予測能力を利用する手法の開発が進んでいる。
本稿では、二重機械学習(DML)(Chernozhukov et al , 2018)を用いて、共同創設者の高次元および非線形ニュアンス関数を近似し、パネルデータから政策介入の影響を推測する。
我々は、線形モデルに対する相関ランダム効果、内部群、第一差分推定を、Robinson (1988) の偏線形回帰モデルから、個々の固定効果と不特定非線形共役効果を持つ静的パネルデータモデルへの拡張に適応させることにより、新しい推定器を提案する。
モンテカルロシミュレーションを用いて、異なる機械学習アルゴリズムの相対的性能を比較し、データ生成プロセスが軽度に非線形で滑らかな場合、従来の最小二乗推定器は良好に動作するが、回帰器の真の効果が非線形で不連続である場合、バイアス低減の観点からは、DMLによるかなりの性能向上がある。
しかし、個々の学習者に基づく推論は、ひどくバイアスのかかる推論につながる可能性がある。
最後に、イギリスにおける最低賃金の導入が投票行動に与える影響を示す観測パネルデータに対するDMLの例を示す。
関連論文リスト
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
本稿では,テキスト・インフルエンス・ファンクション・フレームワークを開発することにより,このような課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
そこで本研究では,機能シフトによるブラックボックスモデルの振る舞いを説明する新しい手法を提案する。
本稿では,最適輸送と共有値の概念を組み合わせた提案手法について,説明的性能推定として紹介する。
論文 参考訳(メタデータ) (2024-08-24T18:28:19Z) - PairCFR: Enhancing Model Training on Paired Counterfactually Augmented Data through Contrastive Learning [49.60634126342945]
Counterfactually Augmented Data (CAD)は、既存のデータサンプルのラベルを他のクラスに戻すのに、最小限かつ十分な修正を適用することで、新しいデータサンプルを作成する。
近年の研究では、CADを用いたトレーニングが、他の重要な文脈情報を無視しながら、モデルが修正機能に過度にフォーカスする可能性があることが示されている。
我々は、対実的手がかりの学習に加えて、グローバルな特徴アライメントを促進するために、対照的な学習を採用する。
論文 参考訳(メタデータ) (2024-06-09T07:29:55Z) - Neural Networks with Causal Graph Constraints: A New Approach for Treatment Effects Estimation [0.951494089949975]
因果グラフからの追加情報を考慮した新しいモデルNN-CGCを提案する。
本手法は因果グラフの不完全性に対して頑健であり,部分因果情報の使用は無視するよりも望ましいことを示す。
論文 参考訳(メタデータ) (2024-04-18T14:57:17Z) - Estimating Causal Effects with Double Machine Learning -- A Method Evaluation [5.904095466127043]
DML(Double/Debiased Machine Learning)の最も顕著な手法の1つについてレビューする。
この結果から, DML 内でのフレキシブルな機械学習アルゴリズムの適用により, 様々な非線形共起関係の調整が向上することが示唆された。
大気汚染が住宅価格に与える影響を推定すると、DMLの見積もりは柔軟性の低い方法の推定よりも一貫して大きいことが分かる。
論文 参考訳(メタデータ) (2024-03-21T13:21:33Z) - Pessimistic Nonlinear Least-Squares Value Iteration for Offline Reinforcement Learning [53.97335841137496]
非線形関数近似を用いたオフラインRLにおけるPNLSVI(Pessimistic Least-Square Value Iteration)と呼ばれるオラクル効率のアルゴリズムを提案する。
本アルゴリズムは,関数クラスの複雑性に強く依存する後悔境界を享受し,線形関数近似に特化して最小限のインスタンス依存後悔を実現する。
論文 参考訳(メタデータ) (2023-10-02T17:42:01Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [65.57123249246358]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - Understanding Influence Functions and Datamodels via Harmonic Analysis [36.86262318584668]
個々のデータポイントがテストデータに対するモデルの予測に与える影響を推定する。
それらは、データ中毒の検出、有用で有害な例の検出、データポイントのグループの影響などに使われる。
近年、Ilyasら[2022]は、データモデルと呼ばれる線形回帰手法を導入し、テストデータに対するトレーニングポイントの効果を予測した。
本稿では,このような興味深い経験的現象の理論的理解を深めることを目的とする。
論文 参考訳(メタデータ) (2022-10-03T16:45:33Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
自己教師付き学習(SSL)と自己エンコーダベースモデル(AE)の相互関係が相互関係に与える影響を示す。
本研究では, 線形ヘッドの潜在バイアスから事前学習したモデルの性能を分離するために, アウト・オブ・ディストリビューション(OOD)データに基づいて訓練された線形ヘッドを用いた新しい評価手法を開発した。
論文 参考訳(メタデータ) (2022-06-17T16:18:28Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Learning from few examples with nonlinear feature maps [68.8204255655161]
我々はこの現象を探求し、AIモデルの特徴空間の次元性、データ分散の非退化、モデルの一般化能力の間の重要な関係を明らかにする。
本分析の主な推力は、元のデータを高次元および無限次元空間にマッピングする非線形特徴変換が結果のモデル一般化能力に与える影響である。
論文 参考訳(メタデータ) (2022-03-31T10:36:50Z) - Robustness Against Weak or Invalid Instruments: Exploring Nonlinear
Treatment Models with Machine Learning [1.3022753212679383]
観測実験における因果推論について検討する。
本稿では,非線形処理モデルと機械学習を併用した2段階曲率同定法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:19:24Z) - Nonlinear Least Squares for Large-Scale Machine Learning using
Stochastic Jacobian Estimates [0.0]
モデルパラメータの数が典型的に1バッチのデータを超えるという特性を利用して探索方向を計算する。
我々は,ヤコビ行列を推定し,最先端の手法と比較してよく機能する2つのアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-07-12T17:29:08Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Active Learning for Gaussian Process Considering Uncertainties with
Application to Shape Control of Composite Fuselage [7.358477502214471]
ガウス過程に不確実性のある2つの新しい能動学習アルゴリズムを提案する。
提案手法は不確実性の影響を取り入れ,予測性能の向上を実現する。
本手法は, 複合胴体の自動形状制御における予測モデルの改善に応用されている。
論文 参考訳(メタデータ) (2020-04-23T02:04:53Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z) - Differentially Private ERM Based on Data Perturbation [41.37436071802578]
最終学習モデルにおける各種トレーニングデータインスタンスのコントリビューションを測定した。
本手法の鍵は各データインスタンスを別々に計測することであり,DP-ERMのための新しいデータ摂動(DB)パラダイムを提案する。
論文 参考訳(メタデータ) (2020-02-20T06:05:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。