論文の概要: OCTDL: Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods
- arxiv url: http://arxiv.org/abs/2312.08255v2
- Date: Tue, 19 Mar 2024 09:49:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 23:51:29.436955
- Title: OCTDL: Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods
- Title(参考訳): OCTDL:画像に基づく深層学習のための光コヒーレンストモグラフィデータセット
- Authors: Mikhail Kulyabin, Aleksei Zhdanov, Anastasia Nikiforova, Andrey Stepichev, Anna Kuznetsova, Mikhail Ronkin, Vasilii Borisov, Alexander Bogachev, Sergey Korotkich, Paul A Constable, Andreas Maier,
- Abstract要約: 本研究は,2000枚以上の OCT 画像からなるオープンアクセス型 OCT データセット (OCTDL) を提案する。
このデータセットは、加齢関連黄斑変性症(AMD)、糖尿病黄斑浮腫(DME)、網膜膜(ERM)、網膜動脈閉塞症(RAO)、網膜静脈閉塞症(RVO)、およびVID(Vitreomacular Interface Disease)患者のOCT記録からなる。
- 参考スコア(独自算出の注目度): 34.13887472397715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optical coherence tomography (OCT) is a non-invasive imaging technique with extensive clinical applications in ophthalmology. OCT enables the visualization of the retinal layers, playing a vital role in the early detection and monitoring of retinal diseases. OCT uses the principle of light wave interference to create detailed images of the retinal microstructures, making it a valuable tool for diagnosing ocular conditions. This work presents an open-access OCT dataset (OCTDL) comprising over 2000 OCT images labeled according to disease group and retinal pathology. The dataset consists of OCT records of patients with Age-related Macular Degeneration (AMD), Diabetic Macular Edema (DME), Epiretinal Membrane (ERM), Retinal Artery Occlusion (RAO), Retinal Vein Occlusion (RVO), and Vitreomacular Interface Disease (VID). The images were acquired with an Optovue Avanti RTVue XR using raster scanning protocols with dynamic scan length and image resolution. Each retinal b-scan was acquired by centering on the fovea and interpreted and cataloged by an experienced retinal specialist. In this work, we applied Deep Learning classification techniques to this new open-access dataset.
- Abstract(参考訳): 光コヒーレンス断層撮影(OCT)は、眼科領域に広く応用された非侵襲的画像診断技術である。
OCTは網膜層の可視化を可能にし、網膜疾患の早期発見とモニタリングにおいて重要な役割を果たす。
OCTは光波干渉の原理を用いて網膜の微細構造の詳細な画像を作成する。
本研究は,2000枚以上の OCT 画像からなるオープンアクセス型 OCT データセット (OCTDL) を提案する。
このデータセットは、加齢関連黄斑変性症(AMD)、糖尿病黄斑浮腫(DME)、網膜膜(ERM)、網膜動脈閉塞症(RAO)、網膜静脈閉塞症(RVO)、およびVID患者のOCT記録からなる。
これらの画像は、動的スキャン長と画像解像度を持つラスタ走査プロトコルを用いて、Optovue Avanti RTVue XRで取得された。
各網膜b-スキャンは、胎児に集中して取得され、経験豊富な網膜専門家によって解釈され、カタログ化された。
本研究では,新しいオープンアクセスデータセットにディープラーニングの分類手法を適用した。
関連論文リスト
- Enhancing Retinal Disease Classification from OCTA Images via Active Learning Techniques [0.8035416719640156]
高齢のアメリカ人では眼疾患が一般的であり、視力や視力の低下につながることがある。
光コヒーレンス・トモグラフィ・アンギオグラフィー(OCTA)により、臨床医が網膜血管の高品質な画像を取得することができる画像技術の最近の進歩
OCTAは、一般的なOCT画像から得られる構造情報と比較して、詳細な血管画像を提供する。
論文 参考訳(メタデータ) (2024-07-21T23:24:49Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
オプティカルコヒーレンス・トモグラフィーは、網膜微小血管の画像化によってアルツハイマー病(AD)を検出するための有望なツールである。
我々はPolar-Netと呼ばれる新しいディープラーニングフレームワークを提案し、解釈可能な結果を提供し、臨床上の事前知識を活用する。
Polar-Netは既存の最先端の手法よりも優れており,網膜血管変化とADとの関連性について,より貴重な病理学的証拠を提供する。
論文 参考訳(メタデータ) (2023-11-10T11:49:49Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - SD-LayerNet: Semi-supervised retinal layer segmentation in OCT using
disentangled representation with anatomical priors [4.2663199451998475]
網膜層セグメンテーションタスクに半教師付きパラダイムを導入する。
特に、表面位置回帰をピクセル単位で構造化されたセグメンテーションに変換するために、新しい完全微分可能なアプローチが用いられる。
並行して,ラベル付きデータの限られた量が利用できる場合に,ネットワークトレーニングを改善するための解剖学的事前セットを提案する。
論文 参考訳(メタデータ) (2022-07-01T14:30:59Z) - Automatic Detection of Microaneurysms in OCT Images Using Bag of
Features [8.777674946755717]
糖尿病による糖尿病網膜症(DR)は網膜血管の変化によって発生し、視覚障害を引き起こす。
Microaneurysms (MAs) はDRの早期臨床症状であり、時間的診断はDRの発達の初期段階における検出に有効である。
本研究は, DR患者20名を対象に, FA画像とOCT画像から収集したデータセットを用いて行った。
論文 参考訳(メタデータ) (2022-05-10T06:43:01Z) - A deep learning model for classification of diabetic retinopathy in eye
fundus images based on retinal lesion detection [0.0]
糖尿病網膜症(英: Diabetic retinopathy, DR)は、糖尿病が網膜に影響を及ぼす結果である。
失明の原因は、未診断で治療を受けていない場合である。
本稿では眼底画像の自動DR分類モデルを提案する。
論文 参考訳(メタデータ) (2021-10-14T22:04:59Z) - MTCD: Cataract Detection via Near Infrared Eye Images [69.62768493464053]
白内障は一般的な眼疾患であり、盲目や視力障害の主な原因の1つである。
近赤外画像を用いた白内障検出のための新しいアルゴリズムを提案する。
深層学習に基づくアイセグメンテーションとマルチタスクネットワーク分類ネットワークについて述べる。
論文 参考訳(メタデータ) (2021-10-06T08:10:28Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
我々は、胸部CT画像からCOVID-19の症例を検出するのに適した、深層畳み込みニューラルネットワークアーキテクチャであるCOVIDNet-CTを紹介した。
また,中国生体情報センターが収集したCT画像データから得られたベンチマークCT画像データセットであるCOVIDx-CTも紹介した。
論文 参考訳(メタデータ) (2020-09-08T15:49:55Z) - ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New
Model [41.444917622855606]
OCT-Aセグメンテーションデータセット(ROSE)は229枚のOCT-A画像からなり、中心線レベルまたは画素レベルで血管アノテーションを付加する。
次に,スプリットをベースとしたSCF-Net(Coarse-to-Fine vessel segmentation Network)を提案する。
SCF-Netでは、スプリットベース粗いセグメンテーション(SCS)モジュールを最初に導入し、スプリットベースリファインメント(SRN)モジュールを使用して形状・形状を最適化する。
論文 参考訳(メタデータ) (2020-07-10T06:54:19Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。