OCTDL: Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods
- URL: http://arxiv.org/abs/2312.08255v4
- Date: Tue, 01 Oct 2024 19:59:21 GMT
- Title: OCTDL: Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods
- Authors: Mikhail Kulyabin, Aleksei Zhdanov, Anastasia Nikiforova, Andrey Stepichev, Anna Kuznetsova, Mikhail Ronkin, Vasilii Borisov, Alexander Bogachev, Sergey Korotkich, Paul A Constable, Andreas Maier,
- Abstract summary: This work presents an open-access OCT dataset ( OCTDL) comprising over 2000 OCT images labeled according to disease group and retinal pathology.
The dataset consists of OCT records of patients with Age-related Macular Degeneration (AMD), Diabetic Macular Edema (DME), Epiretinal Membrane (ERM), Retinal Artery Occlusion (RAO), Retinal Vein OcclusionRVO, and Vitreomacular Interface Disease (VID)
- Score: 34.13887472397715
- License:
- Abstract: Optical coherence tomography (OCT) is a non-invasive imaging technique with extensive clinical applications in ophthalmology. OCT enables the visualization of the retinal layers, playing a vital role in the early detection and monitoring of retinal diseases. OCT uses the principle of light wave interference to create detailed images of the retinal microstructures, making it a valuable tool for diagnosing ocular conditions. This work presents an open-access OCT dataset (OCTDL) comprising over 2000 OCT images labeled according to disease group and retinal pathology. The dataset consists of OCT records of patients with Age-related Macular Degeneration (AMD), Diabetic Macular Edema (DME), Epiretinal Membrane (ERM), Retinal Artery Occlusion (RAO), Retinal Vein Occlusion (RVO), and Vitreomacular Interface Disease (VID). The images were acquired with an Optovue Avanti RTVue XR using raster scanning protocols with dynamic scan length and image resolution. Each retinal b-scan was acquired by centering on the fovea and interpreted and cataloged by an experienced retinal specialist. In this work, we applied Deep Learning classification techniques to this new open-access dataset.
Related papers
- Enhancing Retinal Disease Classification from OCTA Images via Active Learning Techniques [0.8035416719640156]
Eye diseases are common in older Americans and can lead to decreased vision and blindness.
Recent advancements in imaging technologies allow clinicians to capture high-quality images of the retinal blood vessels via Optical Coherence Tomography Angiography ( OCTA)
OCTA provides detailed vascular imaging as compared to the solely structural information obtained by common OCT imaging.
arXiv Detail & Related papers (2024-07-21T23:24:49Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
Optical Coherence Tomography Angiography is a promising tool for detecting Alzheimer's disease (AD) by imaging the retinal microvasculature.
We propose a novel deep-learning framework called Polar-Net to provide interpretable results and leverage clinical prior knowledge.
We show that Polar-Net outperforms existing state-of-the-art methods and provides more valuable pathological evidence for the association between retinal vascular changes and AD.
arXiv Detail & Related papers (2023-11-10T11:49:49Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - SD-LayerNet: Semi-supervised retinal layer segmentation in OCT using
disentangled representation with anatomical priors [4.2663199451998475]
We introduce a semi-supervised paradigm into the retinal layer segmentation task.
In particular, a novel fully differentiable approach is used for converting surface position regression into a pixel-wise structured segmentation.
In parallel, we propose a set of anatomical priors to improve network training when a limited amount of labeled data is available.
arXiv Detail & Related papers (2022-07-01T14:30:59Z) - Automatic Detection of Microaneurysms in OCT Images Using Bag of
Features [8.777674946755717]
Diabetic Retinopathy (DR) caused by diabetes occurs as a result of changes in the retinal vessels and causes visual impairment.
Microaneurysms (MAs) are the early clinical signs of DR, whose timely diagnosis can help detecting DR in the early stages of its development.
This work is done using the dataset collected from FA and OCT images of 20 patients with DR.
arXiv Detail & Related papers (2022-05-10T06:43:01Z) - A deep learning model for classification of diabetic retinopathy in eye
fundus images based on retinal lesion detection [0.0]
Diabetic retinopathy (DR) is the result of a complication of diabetes affecting the retina.
It can cause blindness, if left undiagnosed and untreated.
This paper presents a model for automatic DR classification on eye fundus images.
arXiv Detail & Related papers (2021-10-14T22:04:59Z) - MTCD: Cataract Detection via Near Infrared Eye Images [69.62768493464053]
cataract is a common eye disease and one of the leading causes of blindness and vision impairment.
We present a novel algorithm for cataract detection using near-infrared eye images.
Deep learning-based eye segmentation and multitask network classification networks are presented.
arXiv Detail & Related papers (2021-10-06T08:10:28Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New
Model [41.444917622855606]
We release a dedicated OCT-A SEgmentation dataset (ROSE), which consists of 229 OCT-A images with vessel annotations at either centerline-level or pixel level.
Secondly, we propose a novel Split-based Coarse-to-Fine vessel segmentation network (SCF-Net), with the ability to detect thick and thin vessels separately.
In the SCF-Net, a split-based coarse segmentation (SCS) module is first introduced to produce a preliminary confidence map of vessels, and a split-based refinement (SRN) module is then used to optimize the shape/contour of
arXiv Detail & Related papers (2020-07-10T06:54:19Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.