論文の概要: Kunyu: A High-Performing Global Weather Model Beyond Regression Losses
- arxiv url: http://arxiv.org/abs/2312.08264v1
- Date: Mon, 4 Dec 2023 17:30:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 14:37:27.843392
- Title: Kunyu: A High-Performing Global Weather Model Beyond Regression Losses
- Title(参考訳): Kunyu: 回帰損失を超えた高性能なグローバル気象モデル
- Authors: Zekun Ni
- Abstract要約: 大気変数の包括的配列を0.35デグ分解能で正確に予測する,グローバルなデータ駆動型天気予報モデルであるKunyuについて紹介する。
トレーニングフレームワークにレグレッションと敵の損失が組み込まれ、クンユは明快さとリアリズムを増した予測を生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the past year, data-driven global weather forecasting has emerged as a
new alternative to traditional numerical weather prediction. This innovative
approach yields forecasts of comparable accuracy at a tiny fraction of
computational costs. Regrettably, as far as I know, existing models exclusively
rely on regression losses, producing forecasts with substantial blurring. Such
blurring, although compromises practicality, enjoys an unfair advantage on
evaluation metrics. In this paper, I present Kunyu, a global data-driven
weather forecasting model which delivers accurate predictions across a
comprehensive array of atmospheric variables at 0.35{\deg} resolution. With
both regression and adversarial losses integrated in its training framework,
Kunyu generates forecasts with enhanced clarity and realism. Its performance
outpaces even ECMWF HRES in some aspects such as the estimation of anomaly
extremes, while remaining competitive with ECMWF HRES on evaluation metrics
such as RMSE and ACC. Kunyu is an important step forward in closing the utility
gap between numerical and data-driven weather prediction.
- Abstract(参考訳): 過去1年間で、従来の数値天気予報に代わる新しい代替手段として、データ駆動のグローバル気象予報が登場した。
この革新的なアプローチは、計算コストのほんのわずかで同等の精度の予測をもたらす。
私の知る限りでは、既存のモデルは回帰損失にのみ依存しており、かなりぼやけた予測を生み出している。
このような曖昧さは実用性を損なうが、評価基準において不公平な利点を享受する。
本稿では,0.35{\deg}分解能で大気変数の包括的配列を正確に予測する,グローバルなデータ駆動型天気予報モデルKunyuを提案する。
トレーニングフレームワークにレグレッションと敵の損失が組み込まれ、クンユは明快さとリアリズムを増した予測を生成する。
性能はECMWF HRESよりも、異常極値の推定などいくつかの面で優れているが、RMSEやACCなどの評価指標ではECMWF HRESと競合している。
Kunyuは、数値とデータ駆動の天気予報の実用的ギャップを埋める重要な一歩だ。
関連論文リスト
- HR-Extreme: A High-Resolution Dataset for Extreme Weather Forecasting [12.561873438789242]
本研究では,高解像度の極端気象事例を包含した包括的データセットを提案する。
HR-Extreme上での最先端ディープラーニングモデルと数値気象予測システム(NWP)の評価を行った。
論文 参考訳(メタデータ) (2024-09-27T16:20:51Z) - Lightning-Fast Convective Outlooks: Predicting Severe Convective Environments with Global AI-based Weather Models [0.08271752505511926]
激しい対流嵐は最も危険な気象現象であり、正確な予測は影響を緩和する。
最近リリースされたAIベースの天気モデルスイートは、中距離の予測を数秒で生成する。
本稿では,再解析とECMWFの運用数値天気予報モデルISSに対して,対流パラメータを対象とした3つのAIモデルの予測能力を評価する。
論文 参考訳(メタデータ) (2024-06-13T07:46:03Z) - EWMoE: An effective model for global weather forecasting with mixture-of-experts [6.695845790670147]
本研究では,地球規模の天気予報に有効なモデルであるEWMoEを提案する。
本モデルは,3次元絶対位置埋め込み,Mixture-of-Experts層,および2つの特定の損失関数の3つの重要な要素を組み込んで予測精度を向上させる。
論文 参考訳(メタデータ) (2024-05-09T16:42:13Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。