3DReact: Geometric deep learning for chemical reactions
- URL: http://arxiv.org/abs/2312.08307v2
- Date: Fri, 12 Jul 2024 14:15:23 GMT
- Title: 3DReact: Geometric deep learning for chemical reactions
- Authors: Puck van Gerwen, Ksenia R. Briling, Charlotte Bunne, Vignesh Ram Somnath, Ruben Laplaza, Andreas Krause, Clemence Corminboeuf,
- Abstract summary: We introduce 3DReact, a deep geometric learning model to predict reaction properties from three-dimensional structures of reactants and products.
We show that, compared to existing models for reaction property prediction, 3DReact offers a flexible framework that exploits atom-mapping information.
It performs systematically well across different datasets, atom-mapping regimes, as well as both geometries and extrapolation tasks.
- Score: 35.38031930589095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geometric deep learning models, which incorporate the relevant molecular symmetries within the neural network architecture, have considerably improved the accuracy and data efficiency of predictions of molecular properties. Building on this success, we introduce 3DReact, a geometric deep learning model to predict reaction properties from three-dimensional structures of reactants and products. We demonstrate that the invariant version of the model is sufficient for existing reaction datasets. We illustrate its competitive performance on the prediction of activation barriers on the GDB7-22-TS, Cyclo-23-TS and Proparg-21-TS datasets in different atom-mapping regimes. We show that, compared to existing models for reaction property prediction, 3DReact offers a flexible framework that exploits atom-mapping information, if available, as well as geometries of reactants and products (in an invariant or equivariant fashion). Accordingly, it performs systematically well across different datasets, atom-mapping regimes, as well as both interpolation and extrapolation tasks.
Related papers
- Beyond Major Product Prediction: Reproducing Reaction Mechanisms with
Machine Learning Models Trained on a Large-Scale Mechanistic Dataset [10.968137261042715]
Mechanistic understanding of organic reactions can facilitate reaction development, impurity prediction, and in principle, reaction discovery.
While several machine learning models have sought to address the task of predicting reaction products, their extension to predicting reaction mechanisms has been impeded by the lack of a corresponding mechanistic dataset.
We construct such a dataset by imputing intermediates between experimentally reported reactants and products using expert reaction templates and train several machine learning models on the resulting dataset of 5,184,184 elementary steps.
arXiv Detail & Related papers (2024-03-07T15:26:23Z) - A Generative Machine Learning Model for Material Microstructure 3D
Reconstruction and Performance Evaluation [4.169915659794567]
The dimensional extension from 2D to 3D is viewed as a highly challenging inverse problem from the current technological perspective.
A novel generative model that integrates the multiscale properties of U-net with and the generative capabilities of GAN has been proposed.
The model's accuracy is further improved by combining the image regularization loss with the Wasserstein distance loss.
arXiv Detail & Related papers (2024-02-24T13:42:34Z) - A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems [87.30652640973317]
Recent advances in computational modelling of atomic systems represent them as geometric graphs with atoms embedded as nodes in 3D Euclidean space.
Geometric Graph Neural Networks have emerged as the preferred machine learning architecture powering applications ranging from protein structure prediction to molecular simulations and material generation.
This paper provides a comprehensive and self-contained overview of the field of Geometric GNNs for 3D atomic systems.
arXiv Detail & Related papers (2023-12-12T18:44:19Z) - On the importance of catalyst-adsorbate 3D interactions for relaxed
energy predictions [98.70797778496366]
We investigate whether it is possible to predict a system's relaxed energy in the OC20 dataset while ignoring the relative position of the adsorbate.
We find that while removing binding site information impairs accuracy as expected, modified models are able to predict relaxed energies with remarkably decent MAE.
arXiv Detail & Related papers (2023-10-10T14:57:04Z) - Diffusion-based Generative AI for Exploring Transition States from 2D
Molecular Graphs [0.3759936323189417]
We propose a generative approach based on the diffusion method, namely TSDiff, for prediction of transition state geometries.
TSDiff outperformed the existing machine learning models with 3D geometries in terms of both accuracy and efficiency.
arXiv Detail & Related papers (2023-04-20T10:45:57Z) - Dynamic Molecular Graph-based Implementation for Biophysical Properties
Prediction [9.112532782451233]
We propose a novel approach based on the transformer model utilizing GNNs for characterizing dynamic features of protein-ligand interactions.
Our message passing transformer pre-trains on a set of molecular dynamic data based off of physics-based simulations to learn coordinate construction and make binding probability and affinity predictions.
arXiv Detail & Related papers (2022-12-20T04:21:19Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z) - Energy-based View of Retrosynthesis [70.66156081030766]
We propose a framework that unifies sequence- and graph-based methods as energy-based models.
We present a novel dual variant within the framework that performs consistent training over Bayesian forward- and backward-prediction.
This model improves state-of-the-art performance by 9.6% for template-free approaches where the reaction type is unknown.
arXiv Detail & Related papers (2020-07-14T18:51:06Z) - Graph Neural Networks for the Prediction of Substrate-Specific Organic
Reaction Conditions [79.45090959869124]
We present a systematic investigation using graph neural networks (GNNs) to model organic chemical reactions.
We evaluate seven different GNN architectures for classification tasks pertaining to the identification of experimental reagents and conditions.
arXiv Detail & Related papers (2020-07-08T17:21:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.