Dynamic Molecular Graph-based Implementation for Biophysical Properties
Prediction
- URL: http://arxiv.org/abs/2212.09991v1
- Date: Tue, 20 Dec 2022 04:21:19 GMT
- Title: Dynamic Molecular Graph-based Implementation for Biophysical Properties
Prediction
- Authors: Carter Knutson, Gihan Panapitiya, Rohith Varikoti, Neeraj Kumar
- Abstract summary: We propose a novel approach based on the transformer model utilizing GNNs for characterizing dynamic features of protein-ligand interactions.
Our message passing transformer pre-trains on a set of molecular dynamic data based off of physics-based simulations to learn coordinate construction and make binding probability and affinity predictions.
- Score: 9.112532782451233
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neural Networks (GNNs) have revolutionized the molecular discovery to
understand patterns and identify unknown features that can aid in predicting
biophysical properties and protein-ligand interactions. However, current models
typically rely on 2-dimensional molecular representations as input, and while
utilization of 2\3- dimensional structural data has gained deserved traction in
recent years as many of these models are still limited to static graph
representations. We propose a novel approach based on the transformer model
utilizing GNNs for characterizing dynamic features of protein-ligand
interactions. Our message passing transformer pre-trains on a set of molecular
dynamic data based off of physics-based simulations to learn coordinate
construction and make binding probability and affinity predictions as a
downstream task. Through extensive testing we compare our results with the
existing models, our MDA-PLI model was able to outperform the molecular
interaction prediction models with an RMSE of 1.2958. The geometric encodings
enabled by our transformer architecture and the addition of time series data
add a new dimensionality to this form of research.
Related papers
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - geom2vec: pretrained GNNs as geometric featurizers for conformational dynamics [0.0]
We introduce geom2vec, in which pretrained graph neural networks (GNNs) are used as universal featurizers.
We learn transferable structural representations that capture molecular geometric patterns without further fine-tuning.
arXiv Detail & Related papers (2024-09-30T00:36:06Z) - Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework [0.0]
A hybrid physics-based data-driven surrogate model for the microscale analysis of heterogeneous material is investigated.
The proposed model benefits from the physics-based knowledge contained in the models used in the full-order micromodel by embedding them in a neural network.
arXiv Detail & Related papers (2024-04-05T12:40:03Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - ViSNet: an equivariant geometry-enhanced graph neural network with
vector-scalar interactive message passing for molecules [69.05950120497221]
We propose an equivariant geometry-enhanced graph neural network called ViSNet, which elegantly extracts geometric features and efficiently models molecular structures.
Our proposed ViSNet outperforms state-of-the-art approaches on multiple MD benchmarks, including MD17, revised MD17 and MD22, and achieves excellent chemical property prediction on QM9 and Molecule3D datasets.
arXiv Detail & Related papers (2022-10-29T07:12:46Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - GTrans: Spatiotemporal Autoregressive Transformer with Graph Embeddings
for Nowcasting Extreme Events [5.672898304129217]
This paper proposes atemporal model, namely GTrans, that transforms data features into graph embeddings and predicts temporal dynamics with a transformer model.
According to our experiments, we demonstrate that GTrans can model spatial and temporal dynamics and nowcasts extreme events for datasets.
arXiv Detail & Related papers (2022-01-18T03:26:24Z) - Augmenting Molecular Deep Generative Models with Topological Data
Analysis Representations [21.237758981760784]
We present a SMILES Variational Auto-Encoder (VAE) augmented with topological data analysis (TDA) representations of molecules.
Our experiments show that this TDA augmentation enables a SMILES VAE to capture the complex relation between 3D geometry and electronic properties.
arXiv Detail & Related papers (2021-06-08T15:49:21Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Physics-Constrained Predictive Molecular Latent Space Discovery with
Graph Scattering Variational Autoencoder [0.0]
We develop a molecular generative model based on variational inference and graph theory in the small data regime.
The model's performance is evaluated by generating molecules with desired target properties.
arXiv Detail & Related papers (2020-09-29T09:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.