Robust Hierarchical Planning with Policy Delegation
- URL: http://arxiv.org/abs/2010.13033v1
- Date: Sun, 25 Oct 2020 04:36:20 GMT
- Title: Robust Hierarchical Planning with Policy Delegation
- Authors: Tin Lai, Philippe Morere
- Abstract summary: We propose a novel framework and algorithm for hierarchical planning based on the principle of delegation.
We show this planning approach is experimentally very competitive to classic planning and reinforcement learning techniques on a variety of domains.
- Score: 6.1678491628787455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel framework and algorithm for hierarchical planning based on
the principle of delegation. This framework, the Markov Intent Process,
features a collection of skills which are each specialised to perform a single
task well. Skills are aware of their intended effects and are able to analyse
planning goals to delegate planning to the best-suited skill. This principle
dynamically creates a hierarchy of plans, in which each skill plans for
sub-goals for which it is specialised. The proposed planning method features
on-demand execution---skill policies are only evaluated when needed. Plans are
only generated at the highest level, then expanded and optimised when the
latest state information is available. The high-level plan retains the initial
planning intent and previously computed skills, effectively reducing the
computation needed to adapt to environmental changes. We show this planning
approach is experimentally very competitive to classic planning and
reinforcement learning techniques on a variety of domains, both in terms of
solution length and planning time.
Related papers
- Propose, Assess, Search: Harnessing LLMs for Goal-Oriented Planning in Instructional Videos [48.15438373870542]
VidAssist is an integrated framework designed for zero/few-shot goal-oriented planning in instructional videos.
It employs a breadth-first search algorithm for optimal plan generation.
Experiments demonstrate that VidAssist offers a unified framework for different goal-oriented planning setups.
arXiv Detail & Related papers (2024-09-30T17:57:28Z) - LASP: Surveying the State-of-the-Art in Large Language Model-Assisted AI Planning [7.36760703426119]
This survey aims to highlight the existing challenges in planning with language models.
It focuses on key areas such as embodied environments, optimal scheduling, competitive and cooperative games, task decomposition, reasoning, and planning.
arXiv Detail & Related papers (2024-09-03T11:39:52Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
This paper describes Ada, a framework for automatically constructing task-specific planning representations.
Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks.
arXiv Detail & Related papers (2023-12-13T23:35:31Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
Task planning for embodied AI has been one of the most challenging problems.
We propose a task-agnostic method named 'planning as in-painting'
The proposed framework achieves promising performances in various embodied AI tasks.
arXiv Detail & Related papers (2023-12-02T10:07:17Z) - A Planning Ontology to Represent and Exploit Planning Knowledge for Performance Efficiency [6.87593454486392]
We consider the problem of automated planning, where the objective is to find a sequence of actions that will move an agent from an initial state of the world to a desired goal state.
We hypothesize that given a large number of available planners and diverse planning domains; they carry essential information that can be leveraged to identify suitable planners and improve their performance for a domain.
arXiv Detail & Related papers (2023-07-25T14:51:07Z) - Imitating Graph-Based Planning with Goal-Conditioned Policies [72.61631088613048]
We present a self-imitation scheme which distills a subgoal-conditioned policy into the target-goal-conditioned policy.
We empirically show that our method can significantly boost the sample-efficiency of the existing goal-conditioned RL methods.
arXiv Detail & Related papers (2023-03-20T14:51:10Z) - A Framework for Neurosymbolic Robot Action Planning using Large Language Models [3.0501524254444767]
We present a framework aimed at bridging the gap between symbolic task planning and machine learning approaches.
The rationale is training Large Language Models (LLMs) into a neurosymbolic task planner compatible with the Planning Domain Definition Language (PDDL)
Preliminary results in selected domains show that our method can: (i) solve 95.5% of problems in a test data set of 1,000 samples; (ii) produce plans up to 13.5% shorter than a traditional symbolic planner; (iii) reduce average overall waiting times for a plan availability by up to 61.4%.
arXiv Detail & Related papers (2023-03-01T11:54:22Z) - Long-Horizon Visual Planning with Goal-Conditioned Hierarchical
Predictors [124.30562402952319]
The ability to predict and plan into the future is fundamental for agents acting in the world.
Current learning approaches for visual prediction and planning fail on long-horizon tasks.
We propose a framework for visual prediction and planning that is able to overcome both of these limitations.
arXiv Detail & Related papers (2020-06-23T17:58:56Z) - Divide-and-Conquer Monte Carlo Tree Search For Goal-Directed Planning [78.65083326918351]
We consider alternatives to an implicit sequential planning assumption.
We propose Divide-and-Conquer Monte Carlo Tree Search (DC-MCTS) for approximating the optimal plan.
We show that this algorithmic flexibility over planning order leads to improved results in navigation tasks in grid-worlds.
arXiv Detail & Related papers (2020-04-23T18:08:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.