論文の概要: How to Raise a Robot -- A Case for Neuro-Symbolic AI in Constrained Task
Planning for Humanoid Assistive Robots
- arxiv url: http://arxiv.org/abs/2312.08820v3
- Date: Wed, 27 Dec 2023 19:38:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-29 21:23:37.094347
- Title: How to Raise a Robot -- A Case for Neuro-Symbolic AI in Constrained Task
Planning for Humanoid Assistive Robots
- Title(参考訳): ロボットの育成法 --ヒューマノイド支援ロボットの制約タスク計画におけるニューロシンボリックaiの事例-
- Authors: Niklas Hemken, Florian Jacob, Fabian Peller-Konrad, Rainer Kartmann,
Tamim Asfour, Hannes Hartenstein
- Abstract要約: ロボットタスク計画手法を用いて,プライバシ,セキュリティ,アクセス制御の制約を取り入れた新しい分野を探求する。
本稿では,古典的シンボリックアプローチ,深層学習ニューラルネットワーク,および知識ベースとして大規模言語モデルを用いた現代的アイデアに関する予備的結果を報告する。
- 参考スコア(独自算出の注目度): 4.286794014747407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humanoid robots will be able to assist humans in their daily life, in
particular due to their versatile action capabilities. However, while these
robots need a certain degree of autonomy to learn and explore, they also should
respect various constraints, for access control and beyond. We explore the
novel field of incorporating privacy, security, and access control constraints
with robot task planning approaches. We report preliminary results on the
classical symbolic approach, deep-learned neural networks, and modern ideas
using large language models as knowledge base. From analyzing their trade-offs,
we conclude that a hybrid approach is necessary, and thereby present a new use
case for the emerging field of neuro-symbolic artificial intelligence.
- Abstract(参考訳): ヒューマノイドロボットは、人間の日常生活、特に多目的な行動能力のために、人間を助けることができる。
しかし、これらのロボットは学習と探索にはある程度の自律性が必要だが、アクセス制御など、さまざまな制約を尊重する必要がある。
ロボットタスク計画手法を用いて,プライバシ,セキュリティ,アクセス制御の制約を取り入れた新しい分野を探求する。
本稿では,古典的シンボリックアプローチ,深層学習ニューラルネットワーク,および知識ベースとして大規模言語モデルを用いた現代的アイデアに関する予備的結果を報告する。
それらのトレードオフの分析から,ハイブリッドなアプローチが必要であると結論し,ニューロシンボリック人工知能の新たな分野への新たなユースケースを提案する。
関連論文リスト
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
本稿では,インターネット規模のセマンティック知識を継承するために,事前学習された視覚言語モデル(VLM)上に構築された新しいフローマッチングアーキテクチャを提案する。
我々は,事前訓練後のタスクをゼロショットで実行し,人からの言語指導に追従し,微調整で新たなスキルを習得する能力の観点から,我々のモデルを評価した。
論文 参考訳(メタデータ) (2024-10-31T17:22:30Z) - Trustworthy Conceptual Explanations for Neural Networks in Robot Decision-Making [9.002659157558645]
本稿では,人間に解釈可能な高レベル概念に基づく,信頼性の高い説明可能なロボット工学手法を提案する。
提案手法は、ニューラルネットワークのアクティベーションと人間の解釈可能なビジュアライゼーションをマッチングすることにより、関連する不確実性スコアを説明できる。
論文 参考訳(メタデータ) (2024-09-16T21:11:12Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
脚のついたロボットは、様々な環境をナビゲートし、幅広い障害を克服することができる。
現在の学習手法は、人間の監督を伴わずに、予期せぬ状況の長い尾への一般化に苦慮することが多い。
本稿では,VLM-Predictive Control (VLM-PC) というシステムを提案する。
論文 参考訳(メタデータ) (2024-07-02T21:00:30Z) - Embodied Neuromorphic Artificial Intelligence for Robotics: Perspectives, Challenges, and Research Development Stack [7.253801704452419]
スパイキングニューラルネットワーク(SNN)によるニューロモルフィックコンピューティングの最近の進歩は、ロボット工学の具体的インテリジェンスを可能にする可能性を実証している。
本稿では, ロボットシステムにおいて, エンボディ型ニューロモーフィックAIを実現する方法について考察する。
論文 参考訳(メタデータ) (2024-04-04T09:52:22Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
そこで本研究では,人型ロボットが器用な手を備えた,高次元シミュレーション型ロボット学習ベンチマークHumanoidBenchを提案する。
その結果,現在最先端の強化学習アルゴリズムがほとんどのタスクに支障をきたすのに対して,階層的学習アプローチはロバストな低レベルポリシーに支えられた場合,優れた性能を達成できることがわかった。
論文 参考訳(メタデータ) (2024-03-15T17:45:44Z) - Growing from Exploration: A self-exploring framework for robots based on
foundation models [13.250831101705694]
我々は、ロボットが人間の介入なしに自律的に探索し学習することを可能にするGExpというフレームワークを提案する。
幼児が世界と対話する方法に触発されて、GExpはロボットに、一連の自己生成タスクで環境を理解し、探索するように促す。
論文 参考訳(メタデータ) (2024-01-24T14:04:08Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGenはジェネレーティブなロボットエージェントで、ジェネレーティブなシミュレーションを通じて、さまざまなロボットのスキルを自動的に学習する。
我々の研究は、大規模モデルに埋め込まれた広範囲で多目的な知識を抽出し、それらをロボット工学の分野に移す試みである。
論文 参考訳(メタデータ) (2023-11-02T17:59:21Z) - Exploring AI-enhanced Shared Control for an Assistive Robotic Arm [4.999814847776098]
特に,アートインテリジェンス(AI)を共有制御パラダイムに統合する方法について検討する。
特に,人間とロボットのインターフェースの簡潔な要件に着目した。
論文 参考訳(メタデータ) (2023-06-23T14:19:56Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
我々は世界モデルと予測符号化の2つの概念に焦点を当てる。
神経科学において、予測符号化は、脳がその入力を継続的に予測し、その環境における自身のダイナミクスと制御行動のモデル化に適応するように提案する。
論文 参考訳(メタデータ) (2023-01-14T06:38:14Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z) - Sensorimotor representation learning for an "active self" in robots: A
model survey [10.649413494649293]
人間では、これらの能力は宇宙で私たちの身体を知覚する能力と関連していると考えられている。
本稿では,これらの能力の発達過程について概説する。
人工エージェントにおける自己感覚の出現を可能にする理論計算フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-25T16:31:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。