Compositional Human-Scene Interaction Synthesis with Semantic Control
- URL: http://arxiv.org/abs/2207.12824v1
- Date: Tue, 26 Jul 2022 11:37:44 GMT
- Title: Compositional Human-Scene Interaction Synthesis with Semantic Control
- Authors: Kaifeng Zhao, Shaofei Wang, Yan Zhang, Thabo Beeler, Siyu Tang
- Abstract summary: We aim to synthesize humans interacting with a given 3D scene controlled by high-level semantic specifications.
We design a novel transformer-based generative model, in which the articulated 3D human body surface points and 3D objects are jointly encoded.
Inspired by the compositional nature of interactions that humans can simultaneously interact with multiple objects, we define interaction semantics as the composition of varying numbers of atomic action-object pairs.
- Score: 16.93177243590465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthesizing natural interactions between virtual humans and their 3D
environments is critical for numerous applications, such as computer games and
AR/VR experiences. Our goal is to synthesize humans interacting with a given 3D
scene controlled by high-level semantic specifications as pairs of action
categories and object instances, e.g., "sit on the chair". The key challenge of
incorporating interaction semantics into the generation framework is to learn a
joint representation that effectively captures heterogeneous information,
including human body articulation, 3D object geometry, and the intent of the
interaction. To address this challenge, we design a novel transformer-based
generative model, in which the articulated 3D human body surface points and 3D
objects are jointly encoded in a unified latent space, and the semantics of the
interaction between the human and objects are embedded via positional encoding.
Furthermore, inspired by the compositional nature of interactions that humans
can simultaneously interact with multiple objects, we define interaction
semantics as the composition of varying numbers of atomic action-object pairs.
Our proposed generative model can naturally incorporate varying numbers of
atomic interactions, which enables synthesizing compositional human-scene
interactions without requiring composite interaction data. We extend the PROX
dataset with interaction semantic labels and scene instance segmentation to
evaluate our method and demonstrate that our method can generate realistic
human-scene interactions with semantic control. Our perceptual study shows that
our synthesized virtual humans can naturally interact with 3D scenes,
considerably outperforming existing methods. We name our method COINS, for
COmpositional INteraction Synthesis with Semantic Control. Code and data are
available at https://github.com/zkf1997/COINS.
Related papers
- Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
We propose a visual-geometric collaborative guided affordance learning network that incorporates visual and geometric cues.
Our method outperforms the representative models regarding objective metrics and visual quality.
arXiv Detail & Related papers (2024-10-15T07:35:51Z) - InterDreamer: Zero-Shot Text to 3D Dynamic Human-Object Interaction [27.10256777126629]
This paper showcases the potential of generating human-object interactions without direct training on text-interaction pair data.
We introduce a world model designed to comprehend simple physics, modeling how human actions influence object motion.
By integrating these components, our novel framework, InterDreamer, is able to generate text-aligned 3D HOI sequences in a zero-shot manner.
arXiv Detail & Related papers (2024-03-28T17:59:30Z) - ParaHome: Parameterizing Everyday Home Activities Towards 3D Generative
Modeling of Human-Object Interactions [11.32229757116179]
We introduce the ParaHome system, designed to capture dynamic 3D movements of humans and objects within a common home environment.
By leveraging the ParaHome system, we collect a novel large-scale dataset of human-object interaction.
arXiv Detail & Related papers (2024-01-18T18:59:58Z) - LEMON: Learning 3D Human-Object Interaction Relation from 2D Images [56.6123961391372]
Learning 3D human-object interaction relation is pivotal to embodied AI and interaction modeling.
Most existing methods approach the goal by learning to predict isolated interaction elements.
We present LEMON, a unified model that mines interaction intentions of the counterparts and employs curvatures to guide the extraction of geometric correlations.
arXiv Detail & Related papers (2023-12-14T14:10:57Z) - Controllable Human-Object Interaction Synthesis [77.56877961681462]
We propose Controllable Human-Object Interaction Synthesis (CHOIS) to generate synchronized object motion and human motion in 3D scenes.
Here, language descriptions inform style and intent, and waypoints, which can be effectively extracted from high-level planning, ground the motion in the scene.
Our module seamlessly integrates with a path planning module, enabling the generation of long-term interactions in 3D environments.
arXiv Detail & Related papers (2023-12-06T21:14:20Z) - GenZI: Zero-Shot 3D Human-Scene Interaction Generation [39.9039943099911]
We propose GenZI, the first zero-shot approach to generating 3D human-scene interactions.
Key to GenZI is our distillation of interaction priors from large vision-language models (VLMs), which have learned a rich semantic space of 2D human-scene compositions.
In contrast to existing learning-based approaches, GenZI circumvents the conventional need for captured 3D interaction data.
arXiv Detail & Related papers (2023-11-29T15:40:11Z) - InterControl: Zero-shot Human Interaction Generation by Controlling Every Joint [67.6297384588837]
We introduce a novel controllable motion generation method, InterControl, to encourage the synthesized motions maintaining the desired distance between joint pairs.
We demonstrate that the distance between joint pairs for human-wise interactions can be generated using an off-the-shelf Large Language Model.
arXiv Detail & Related papers (2023-11-27T14:32:33Z) - NIFTY: Neural Object Interaction Fields for Guided Human Motion
Synthesis [21.650091018774972]
We create a neural interaction field attached to a specific object, which outputs the distance to the valid interaction manifold given a human pose as input.
This interaction field guides the sampling of an object-conditioned human motion diffusion model.
We synthesize realistic motions for sitting and lifting with several objects, outperforming alternative approaches in terms of motion quality and successful action completion.
arXiv Detail & Related papers (2023-07-14T17:59:38Z) - IMoS: Intent-Driven Full-Body Motion Synthesis for Human-Object
Interactions [69.95820880360345]
We present the first framework to synthesize the full-body motion of virtual human characters with 3D objects placed within their reach.
Our system takes as input textual instructions specifying the objects and the associated intentions of the virtual characters.
We show that our synthesized full-body motions appear more realistic to the participants in more than 80% of scenarios.
arXiv Detail & Related papers (2022-12-14T23:59:24Z) - BEHAVE: Dataset and Method for Tracking Human Object Interactions [105.77368488612704]
We present the first full body human- object interaction dataset with multi-view RGBD frames and corresponding 3D SMPL and object fits along with the annotated contacts between them.
We use this data to learn a model that can jointly track humans and objects in natural environments with an easy-to-use portable multi-camera setup.
arXiv Detail & Related papers (2022-04-14T13:21:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.