Quantum improvement in Spatial Discretization
- URL: http://arxiv.org/abs/2312.09036v1
- Date: Thu, 14 Dec 2023 15:36:10 GMT
- Title: Quantum improvement in Spatial Discretization
- Authors: Saul Gonzalez and Parfait Atchade-Adelomou
- Abstract summary: We introduce a quantum algorithm that improves spatial discretization within constraints.
Our algorithm bridges the gap from theoretical models to tangible quantum circuitry.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum algorithms have begun to surpass classical ones in several
computation fields, yet practical application remains challenging due to
hardware and software limitations. Here, we introduce a quantum algorithm that
quadratically improves spatial discretization within these constraints.
Implemented in the quantum software library Pennylane, our algorithm bridges
the gap from theoretical models to tangible quantum circuitry. The approach
promises enhanced efficiency in quantum spatial analysis, with simulations and
hardware experiments validating its potential.
Related papers
- Lower bound for simulation cost of open quantum systems: Lipschitz continuity approach [5.193557673127421]
We present a general framework to calculate the lower bound for simulating a broad class of quantum Markov semigroups.
Our framework can be applied to both unital and non-unital quantum dynamics.
arXiv Detail & Related papers (2024-07-22T03:57:41Z) - Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation [49.1574468325115]
This study presents the theoretical background and the hardware aware circuit implementation of a quantum tunneling simulation.
We use error mitigation techniques (ZNE and REM) and multiprogramming of the quantum chip for solving the hardware under-utilization problem.
arXiv Detail & Related papers (2024-04-10T14:27:07Z) - Scalable Quantum Algorithms for Noisy Quantum Computers [0.0]
This thesis develops two main techniques to reduce the quantum computational resource requirements.
The aim is to scale up application sizes on current quantum processors.
While the main focus of application for our algorithms is the simulation of quantum systems, the developed subroutines can further be utilized in the fields of optimization or machine learning.
arXiv Detail & Related papers (2024-03-01T19:36:35Z) - Feedback-based Quantum Algorithm Inspired by Counterdiabatic Driving [0.32985979395737786]
We propose a protocol that uses ideas from quantum Lyapunov control and the counterdiabatic driving protocol.
We apply our algorithm to prepare ground states in one-dimensional quantum Ising spin chains.
arXiv Detail & Related papers (2024-01-27T05:41:32Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Hybrid quantum gap estimation algorithm using a filtered time series [0.0]
We prove that classical post-processing, i.e., long-time filtering of an offline time series, exponentially improves the circuit depth needed for quantum time evolution.
We apply the filtering method to the construction of a hybrid quantum-classical algorithm to estimate energy gap.
Our findings set the stage for unbiased quantum simulation to offer memory advantage in the near term.
arXiv Detail & Related papers (2022-12-28T18:59:59Z) - Variational Quantum Algorithms for Computational Fluid Dynamics [0.0]
Variational quantum algorithms are particularly promising since they are comparatively noise tolerant.
We show how variational quantum algorithms can be utilized in computational fluid dynamics.
We argue that a quantum advantage over classical computing methods could be achieved by the end of this decade.
arXiv Detail & Related papers (2022-09-11T18:49:22Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.