Photonic fusion of entangled resource states from a quantum emitter
- URL: http://arxiv.org/abs/2312.09070v1
- Date: Thu, 14 Dec 2023 16:05:20 GMT
- Title: Photonic fusion of entangled resource states from a quantum emitter
- Authors: Yijian Meng, Carlos F.D. Faurby, Ming Lai Chan, Patrik I. Sund, Zhe
Liu, Ying Wang, Nikolai Bart, Andreas D. Wieck, Arne Ludwig, Leonardo Midolo,
Anders S. S{\o}rensen, Stefano Paesani, Peter Lodahl
- Abstract summary: Fusion-based quantum computing architectures rely on two primitives: near-deterministic generation and control of constant-size entangled states.
We demonstrate these key functionalities by fusing resource states deterministically generated using a solid-state spin-photon interface.
- Score: 4.524467521100329
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Fusion-based photonic quantum computing architectures rely on two primitives:
i) near-deterministic generation and control of constant-size entangled states
and ii) probabilistic entangling measurements (photonic fusion gates) between
entangled states. Here, we demonstrate these key functionalities by fusing
resource states deterministically generated using a solid-state spin-photon
interface. Repetitive operation of the source leads to sequential entanglement
generation, whereby curiously entanglement is created between the quantum
states of the same spin at two different instances in time. Such temporal
multiplexing of photonic entanglement provides a resource-efficient route to
scaling many-body entangled systems with photons.
Related papers
- Deterministic generation of a 20-qubit two-dimensional photonic cluster state [87.34681687753141]
We present a device capable of emitting large-scale entangled microwave photonic states in a two dimensional ladder structure.
By interleaving two-qubit gates with controlled photon emission, we generate 2 x n grids of time- and frequency-multiplexed cluster states of itinerant microwave photons.
We measure a signature of localizable entanglement across up to 20 photonic qubits.
arXiv Detail & Related papers (2024-09-10T16:25:24Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Generation and characterization of polarization-entangled states using
quantum dot single-photon sources [0.0]
Single-photon sources based on semiconductor quantum dots find several applications in quantum information processing.
We implement this approach via a simple and compact design that generates entangled photon pairs in the polarization degree of freedom.
Our source shows long-term stability and high quality of the generated entangled states, thus constituting a reliable building block for optical quantum technologies.
arXiv Detail & Related papers (2023-08-04T16:07:12Z) - Loss-tolerant architecture for quantum computing with quantum emitters [0.0]
We develop an architecture for measurement-based quantum computing using photonic quantum emitters.
We exploit spin-photon entanglement as resource states and standard Bell measurements of photons for fusing them into a large spin-qubit cluster state.
arXiv Detail & Related papers (2023-04-07T18:00:25Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Deterministic Generation of Multidimensional Photonic Cluster States
with a Single Quantum Emitter [1.2233362977312945]
We present an experimental implementation in the microwave domain of a resource-efficient scheme for the deterministic generation of 2D photonic cluster states.
By utilizing a coupled resonator array as a slow-light waveguide, a single flux-tunable transmon qubit as a quantum emitter, and a second auxiliary transmon as a switchable mirror, we achieve rapid, shaped emission of entangled photon wavepackets.
We leverage these capabilities to generate a 2D cluster state of four photons with 70% fidelity, as verified by tomographic reconstruction of the quantum state.
arXiv Detail & Related papers (2022-06-21T02:08:18Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Realizing a Deterministic Source of Multipartite-Entangled Photonic
Qubits [0.4355994393060723]
Localizable entanglement persists over a distance of approximately ten photonic qubits, outperforming any previous deterministic scheme.
We reconstruct the entire quantum many-body state for up to $N=4$ photonic modes and infer the quantum state for even larger $N$ from process tomography.
arXiv Detail & Related papers (2020-05-14T15:18:12Z) - Quantum teleportation with hybrid entangled resources prepared from
heralded quantum states [68.8204255655161]
We propose the generation of a hybrid entangled resource (HER)
The work includes a discussion about the fidelity dependence on the geometrical properties of the medium through which the HER is generated.
No spectral filtering is employed in the heralding process, which emphasizes the feasibility of this scheme without compromising photon flux.
arXiv Detail & Related papers (2020-02-07T21:20:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.