論文の概要: The Earth is Flat because...: Investigating LLMs' Belief towards Misinformation via Persuasive Conversation
- arxiv url: http://arxiv.org/abs/2312.09085v5
- Date: Fri, 31 May 2024 15:13:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 20:21:48.297477
- Title: The Earth is Flat because...: Investigating LLMs' Belief towards Misinformation via Persuasive Conversation
- Title(参考訳): 地球は平らである:―説得的会話を通してLLMの誤報に対する信念を調査する―
- Authors: Rongwu Xu, Brian S. Lin, Shujian Yang, Tianqi Zhang, Weiyan Shi, Tianwei Zhang, Zhixuan Fang, Wei Xu, Han Qiu,
- Abstract要約: 大規模な言語モデル(LLM)は膨大な量の知識をカプセル化しているが、それでも外部の誤情報に弱いままである。
説得的対話におけるLLMの信念変化を追跡するためのテストフレームワークを開発する。
LLMの事実知識に対する正しい信念は、様々な説得的戦略によって容易に操作できることがわかった。
- 参考スコア(独自算出の注目度): 23.39754835621968
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) encapsulate vast amounts of knowledge but still remain vulnerable to external misinformation. Existing research mainly studied this susceptibility behavior in a single-turn setting. However, belief can change during a multi-turn conversation, especially a persuasive one. Therefore, in this study, we delve into LLMs' susceptibility to persuasive conversations, particularly on factual questions that they can answer correctly. We first curate the Farm (i.e., Fact to Misinform) dataset, which contains factual questions paired with systematically generated persuasive misinformation. Then, we develop a testing framework to track LLMs' belief changes in a persuasive dialogue. Through extensive experiments, we find that LLMs' correct beliefs on factual knowledge can be easily manipulated by various persuasive strategies.
- Abstract(参考訳): 大規模な言語モデル(LLM)は膨大な量の知識をカプセル化しているが、それでも外部の誤情報に弱いままである。
現存する研究は主に、この感受性の挙動を1ターンで研究している。
しかし、信念は多面的な会話、特に説得力のある会話の間に変化する可能性がある。
そこで本研究では,LLMの説得的会話に対する感受性について検討し,特に正解できる事実的質問について考察した。
我々はまず、体系的に生成された説得的誤報と組み合わせた事実質問を含むFact to Misinformデータセット(Fact to Misinform)をキュレートする。
そこで我々は,説得的対話におけるLLMの信念変化を追跡するためのテストフレームワークを開発した。
広範にわたる実験により,LLMの事実知識に対する正しい信念は,様々な説得的戦略によって容易に操作できることが判明した。
関連論文リスト
- Measuring and Benchmarking Large Language Models' Capabilities to Generate Persuasive Language [41.052284715017606]
本研究では,Large Language Models (LLM) の説得的テキスト生成能力について検討する。
我々は、短いテキストとLLMで書き直されたテキストからなるペアからなる新しいデータセットPersuasive-Pairsを構築した。
テキストペア間の説得的言語スコアを予測するために,回帰モデルをトレーニングするために使用できることを示す。
論文 参考訳(メタデータ) (2024-06-25T17:40:47Z) - LLMs' Reading Comprehension Is Affected by Parametric Knowledge and Struggles with Hypothetical Statements [59.71218039095155]
言語モデルの自然言語理解(NLU)能力を評価するための主要な手段として、読解理解(RC)があげられる。
文脈がモデルの内部知識と一致している場合、モデルの回答がコンテキスト理解に由来するのか、あるいは内部情報から生じるのかを識別することは困難である。
この問題に対処するために、架空の事実や実体に基づいて、想像上のデータにRCを使うことを提案する。
論文 参考訳(メタデータ) (2024-04-09T13:08:56Z) - LEMMA: Towards LVLM-Enhanced Multimodal Misinformation Detection with External Knowledge Augmentation [58.524237916836164]
外部知識を付加したLVLM強化マルチモーダル誤報検出システム LEMMAを提案する。
提案手法は,Twitter と Fakeddit のデータセットにおいて,上位ベースライン LVLM の精度を 7% と 13% に向上させる。
論文 参考訳(メタデータ) (2024-02-19T08:32:27Z) - What Evidence Do Language Models Find Convincing? [103.67867531892988]
議論の的になっているクエリと、さまざまな事実を含む実世界の証拠文書を組み合わせたデータセットを構築します。
このデータセットを用いて、感度と反ファクト分析を行い、どのテキスト特徴がLLM予測に最も影響するかを探索する。
全体として、現在のモデルは、クエリに対するWebサイトの関連性に大きく依存している一方で、人間が重要と考えるスタイル的特徴をほとんど無視している。
論文 参考訳(メタデータ) (2024-02-19T02:15:34Z) - When Do LLMs Need Retrieval Augmentation? Mitigating LLMs' Overconfidence Helps Retrieval Augmentation [66.01754585188739]
大規模言語モデル(LLM)は、特定の知識を持っていないことを知るのが困難であることが判明した。
Retrieval Augmentation (RA)はLLMの幻覚を緩和するために広く研究されている。
本稿では,LLMの知識境界に対する認識を高めるためのいくつかの手法を提案する。
論文 参考訳(メタデータ) (2024-02-18T04:57:19Z) - How should the advent of large language models affect the practice of
science? [51.62881233954798]
大規模言語モデルの出現は科学の実践にどのように影響を与えるべきか?
我々は4つの科学者グループを招待し、この質問を反映し、彼らの見解を共有し、議論をおこなった。
論文 参考訳(メタデータ) (2023-12-05T10:45:12Z) - Disinformation Capabilities of Large Language Models [0.564232659769944]
本稿では,現在世代の大言語モデル(LLM)の非情報化能力について述べる。
20個の偽情報物語を用いた10個のLDMの能力評価を行った。
LLMは、危険な偽情報の物語に一致する説得力のあるニュース記事を生成することができると結論付けている。
論文 参考訳(メタデータ) (2023-11-15T10:25:30Z) - Combating Misinformation in the Age of LLMs: Opportunities and
Challenges [21.712051537924136]
LLM(Large Language Models)の出現は、誤情報と戦う環境を再構築する大きな可能性を秘めている。
一方、LLMは、その深い世界知識と強力な推論能力のために、誤情報と戦うための有望な機会をもたらす。
一方,LLMは大規模に誤情報を生成するために容易に活用できるという点が重要な課題である。
論文 参考訳(メタデータ) (2023-11-09T00:05:27Z) - Do Large Language Models Know about Facts? [60.501902866946]
大規模言語モデル(LLM)は、最近、さまざまな自然言語処理タスクにおいて、大幅なパフォーマンス改善を推進している。
我々は,ベンチマークPinocchioを設計し,LLM内の事実知識の範囲と範囲を評価することを目的とする。
Pinocchioには、異なるソース、タイムライン、ドメイン、リージョン、言語にまたがる20万のさまざまな事実質問が含まれている。
論文 参考訳(メタデータ) (2023-10-08T14:26:55Z) - Can LLM-Generated Misinformation Be Detected? [18.378744138365537]
大型言語モデル(LLM)は誤情報を生成するために利用することができる。
LLMが生成した誤報は、人間が書いた誤報よりも有害か?
論文 参考訳(メタデータ) (2023-09-25T00:45:07Z) - Can ChatGPT Defend its Belief in Truth? Evaluating LLM Reasoning via
Debate [19.887103433032774]
大規模言語モデル(LLM)は複雑な推論タスクにおいて顕著なパフォーマンスを示している。
この研究は、LLMの推論を議論のような会話で議論することで検証する。
優れたパフォーマンスにもかかわらず、ChatGPTのようなLLMは、かなりの例において、真実に対する信念を維持できないことに気付きました。
論文 参考訳(メタデータ) (2023-05-22T15:47:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。