論文の概要: MRL-PoS: A Multi-agent Reinforcement Learning based Proof of Stake Consensus Algorithm for Blockchain
- arxiv url: http://arxiv.org/abs/2312.09123v1
- Date: Thu, 14 Dec 2023 16:58:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 12:17:07.892008
- Title: MRL-PoS: A Multi-agent Reinforcement Learning based Proof of Stake Consensus Algorithm for Blockchain
- Title(参考訳): MRL-PoS:ブロックチェーンのための吸気合意アルゴリズムの証明に基づくマルチエージェント強化学習
- Authors: Tariqul Islam, Faisal Haque Bappy, Tarannum Shaila Zaman, Md Sajidul Islam Sajid, Mir Mehedi Ahsan Pritom,
- Abstract要約: 本稿では,マルチエージェント強化学習に基づくProof-of-StakeコンセンサスアルゴリズムであるMRL-PoSを紹介する。
悪意のあるノードを排除し、正直なノードにインセンティブを与える、報酬と罰則の仕組みが組み込まれている。
- 参考スコア(独自算出の注目度): 0.18641315013048293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The core of a blockchain network is its consensus algorithm. Starting with the Proof-of-Work, there have been various versions of consensus algorithms, such as Proof-of-Stake (PoS), Proof-of-Authority (PoA), and Practical Byzantine Fault Tolerance (PBFT). Each of these algorithms focuses on different aspects to ensure efficient and reliable processing of transactions. Blockchain operates in a decentralized manner where there is no central authority and the network is composed of diverse users. This openness creates the potential for malicious nodes to disrupt the network in various ways. Therefore, it is crucial to embed a mechanism within the blockchain network to constantly monitor, identify, and eliminate these malicious nodes. However, there is no one-size-fits-all mechanism to identify all malicious nodes. Hence, the dynamic adaptability of the blockchain network is important to maintain security and reliability at all times. This paper introduces MRL-PoS, a Proof-of-Stake consensus algorithm based on multi-agent reinforcement learning. MRL-PoS employs reinforcement learning for dynamically adjusting to the behavior of all users. It incorporates a system of rewards and penalties to eliminate malicious nodes and incentivize honest ones. Additionally, MRL-PoS has the capability to learn and respond to new malicious tactics by continually training its agents.
- Abstract(参考訳): ブロックチェーンネットワークの中核は、コンセンサスアルゴリズムである。
Proof-of-Workをはじめ、PoS(Proof-of-Stake)、PoA(Proof-of-Authority)、PBFT(Practical Byzantine Fault Tolerance)といったコンセンサスアルゴリズムの様々なバージョンがある。
これらのアルゴリズムはそれぞれ、トランザクションの効率的で信頼性の高い処理を保証するために、さまざまな側面に焦点を当てています。
ブロックチェーンは中央の権威がなく、ネットワークは多様なユーザで構成される分散的な方法で運用されている。
このオープン性は、悪意のあるノードがネットワークをさまざまな方法で破壊する可能性を生んでいる。
したがって、これらの悪意のあるノードを常に監視、識別、削除するためのメカニズムをブロックチェーンネットワークに組み込むことが重要です。
しかしながら、すべての悪意のあるノードを特定するのに、すべてに適合するメカニズムは存在しない。
したがって、ブロックチェーンネットワークの動的適応性は、セキュリティと信頼性を常に維持するために重要である。
本稿では,マルチエージェント強化学習に基づくProof-of-StakeコンセンサスアルゴリズムであるMRL-PoSを紹介する。
MRL-PoSは、すべてのユーザの振る舞いを動的に調整するために強化学習を採用している。
悪意のあるノードを排除し、正直なノードにインセンティブを与える、報酬と罰則の仕組みが組み込まれている。
さらにMRL-PoSは、エージェントを継続的に訓練することで、新しい悪意ある戦術を学習し、反応する能力を持っている。
関連論文リスト
- Securing Proof of Stake Blockchains: Leveraging Multi-Agent Reinforcement Learning for Detecting and Mitigating Malicious Nodes [0.2982610402087727]
MRL-PoS+は、PoSブロックチェーンのセキュリティを強化するための新しいコンセンサスアルゴリズムである。
MRL-PoS+は,PoSブロックチェーンの攻撃レジリエンスを著しく向上することを示す。
論文 参考訳(メタデータ) (2024-07-30T17:18:03Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
本稿では,Byzantine-fault Tolerant(BFT)コンセンサスプロトコルを用いた,しきい値暗号とブロックチェーンのクラス間の相互作用について検討する。
しきい値暗号システムに対する既存のアプローチは、しきい値暗号プロトコルを実行するための少なくとも1つのメッセージ遅延の遅延オーバーヘッドを導入している。
しきい値が狭いブロックチェーンネイティブのしきい値暗号システムに対して,このオーバーヘッドを取り除く機構を提案する。
論文 参考訳(メタデータ) (2024-07-16T20:53:04Z) - Fuzzychain: An Equitable Consensus Mechanism for Blockchain Networks [12.433289572707212]
Fuzzychainは、PoS(Proof of Stake)の欠点に対する解決策として提案されている。
ファイトセマンティクスを定義するためにファジィセットを導入し、分散化された分散処理制御を促進する。
以上の結果から,Fuzzychainは機能的にPoSに適合するだけでなく,バリデータ間の利害関係の公平な分布も確保できることがわかった。
論文 参考訳(メタデータ) (2024-04-20T10:01:40Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
我々は、ブロックチェーン対応Web 3.0のための、グラフ注意ネットワーク(GAT)ベースの信頼できるブロック伝搬最適化フレームワークを設計する。
ブロック伝搬の信頼性を実現するために,主観的論理モデルに基づく評価機構を導入する。
グラフ構造化データの処理能力に優れたGATが存在することを考慮し、GATを強化学習に利用して最適なブロック伝搬軌道を得る。
論文 参考訳(メタデータ) (2024-03-20T01:58:38Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence(GAI)は、ブロックチェーン技術の課題に対処するための有望なソリューションとして登場した。
本稿では、まずGAI技術を紹介し、そのアプリケーションの概要を説明し、GAIをブロックチェーンに統合するための既存のソリューションについて議論する。
論文 参考訳(メタデータ) (2024-01-28T10:46:17Z) - TBDD: A New Trust-based, DRL-driven Framework for Blockchain Sharding in IoT [25.15169926146292]
シャードブロックチェーンとIoTを統合することで、信頼性の問題と最適化されたデータフローに対するソリューションが提示される。
深層強化学習は動的で複雑なシステムと多次元最適化を十分に扱う。
textscTbDdはノードタイプを認識し、潜在的な脅威に対してターゲットリシャーディングを実行する。
論文 参考訳(メタデータ) (2024-01-01T01:57:28Z) - Defending Against Poisoning Attacks in Federated Learning with
Blockchain [12.840821573271999]
ブロックチェーンと分散台帳技術に基づくセキュアで信頼性の高いフェデレーション学習システムを提案する。
本システムでは,オンチェーン型スマートコントラクトを利用したピアツーピア投票機構と報酬アンドスラッシュ機構を組み込んで,悪意ある行動の検出と検出を行う。
論文 参考訳(メタデータ) (2023-07-02T11:23:33Z) - Blockchain Framework for Artificial Intelligence Computation [1.8148198154149393]
ブロック検証とコンセンサス機構を深層強化学習プロセスとして設計する。
当社の手法は,次世代のパブリックブロックチェーンネットワークの設計に使用されている。
論文 参考訳(メタデータ) (2022-02-23T01:44:27Z) - Quantum-resistance in blockchain networks [46.63333997460008]
本稿では、ブロックチェーンネットワークにおける量子脅威を特定し、排除するために、米国間開発銀行、IDBラボ、LACChain、量子コンピューティング(CQC)、Tecnologicalo de Monterreyによる研究について述べる。
量子コンピューティングの出現は、非量子耐性暗号アルゴリズムを利用するため、インターネットプロトコルやブロックチェーンネットワークを脅かす。
論文 参考訳(メタデータ) (2021-06-11T23:39:25Z) - Byzantine-resilient Decentralized Stochastic Gradient Descent [85.15773446094576]
分散学習システムのビザンチンレジリエンスに関する詳細な研究について述べる。
ビザンチンフォールトトレランスを用いた分散学習を支援する新しいアルゴリズムUBARを提案する。
論文 参考訳(メタデータ) (2020-02-20T05:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。