Unbiasing Enhanced Sampling on a High-dimensional Free Energy Surface
with Deep Generative Model
- URL: http://arxiv.org/abs/2312.09404v2
- Date: Mon, 18 Dec 2023 03:44:35 GMT
- Title: Unbiasing Enhanced Sampling on a High-dimensional Free Energy Surface
with Deep Generative Model
- Authors: Yikai Liu, Tushar K. Ghosh, Guang Lin, Ming Chen
- Abstract summary: We propose an unbiasing method based on the score-based diffusion model.
We test the score-based diffusion unbiasing method on TAMD simulations.
- Score: 8.733395226793029
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biased enhanced sampling methods utilizing collective variables (CVs) are
powerful tools for sampling conformational ensembles. Due to high intrinsic
dimensions, efficiently generating conformational ensembles for complex systems
requires enhanced sampling on high-dimensional free energy surfaces. While
methods like temperature-accelerated molecular dynamics (TAMD) can adopt many
CVs in a simulation, unbiasing the simulation requires accurate modeling of a
high-dimensional CV probability distribution, which is challenging for
traditional density estimation techniques. Here we propose an unbiasing method
based on the score-based diffusion model, a deep generative learning method
that excels in density estimation across complex data landscapes. We test the
score-based diffusion unbiasing method on TAMD simulations. The results
demonstrate that this unbiasing approach significantly outperforms traditional
unbiasing methods, and can generate accurate unbiased conformational ensembles
for simulations with a number of CVs higher than usual ranges.
Related papers
- Adaptive Fuzzy C-Means with Graph Embedding [84.47075244116782]
Fuzzy clustering algorithms can be roughly categorized into two main groups: Fuzzy C-Means (FCM) based methods and mixture model based methods.
We propose a novel FCM based clustering model that is capable of automatically learning an appropriate membership degree hyper- parameter value.
arXiv Detail & Related papers (2024-05-22T08:15:50Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Iterated Denoising Energy Matching for Sampling from Boltzmann Densities [109.23137009609519]
Iterated Denoising Energy Matching (iDEM)
iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our matching objective.
We show that the proposed approach achieves state-of-the-art performance on all metrics and trains $2-5times$ faster.
arXiv Detail & Related papers (2024-02-09T01:11:23Z) - Balanced Training of Energy-Based Models with Adaptive Flow Sampling [13.951904929884618]
Energy-based models (EBMs) are versatile density estimation models that directly parameterize an unnormalized log density.
We propose a new maximum likelihood training algorithm for EBMs that uses a different type of generative model, normalizing flows (NF)
Our method fits an NF to an EBM during training so that an NF-assisted sampling scheme provides an accurate gradient for the EBMs at all times.
arXiv Detail & Related papers (2023-06-01T13:58:06Z) - Efficient Training of Energy-Based Models Using Jarzynski Equality [13.636994997309307]
Energy-based models (EBMs) are generative models inspired by statistical physics.
The computation of its gradient with respect to the model parameters requires sampling the model distribution.
Here we show how results for nonequilibrium thermodynamics based on Jarzynski equality can be used to perform this computation efficiently.
arXiv Detail & Related papers (2023-05-30T21:07:52Z) - LEAN-DMKDE: Quantum Latent Density Estimation for Anomaly Detection [0.0]
The method combines an autoencoder, for learning a low-dimensional representation of the data, with a density-estimation model.
The method predicts a degree of normality for new samples based on the estimated density.
The experimental results show that the method performs on par with or outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2022-11-15T21:51:42Z) - Reweighted Manifold Learning of Collective Variables from Enhanced Sampling Simulations [2.6009298669020477]
We provide a framework based on anisotropic diffusion maps for manifold learning.
We show that our framework reverts the biasing effect yielding CVs that correctly describe the equilibrium density.
We show that it can be used in many manifold learning techniques on data from both standard and enhanced sampling simulations.
arXiv Detail & Related papers (2022-07-29T08:59:56Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
We use isometries to separate manifold learning and density estimation.
We also employ autoencoders to design embeddings with explicit inverses that do not distort the probability distribution.
arXiv Detail & Related papers (2022-03-08T08:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.