Riemannian Prediction of Anatomical Diagnoses in Congenital Heart
Disease based on 12-lead ECGs
- URL: http://arxiv.org/abs/2312.09437v1
- Date: Mon, 27 Nov 2023 13:40:27 GMT
- Title: Riemannian Prediction of Anatomical Diagnoses in Congenital Heart
Disease based on 12-lead ECGs
- Authors: Muhammet Alkan, Gruschen Veldtman, Fani Deligianni
- Abstract summary: Congenital heart disease (CHD) is a relatively rare disease that affects patients at birth and results in extremely heterogeneous anatomical and functional defects.
12-lead ECG signal is routinely collected in CHD patients because it provides significant biomarkers for disease prognosis.
- Score: 2.090217662115913
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Congenital heart disease (CHD) is a relatively rare disease that affects
patients at birth and results in extremely heterogeneous anatomical and
functional defects. 12-lead ECG signal is routinely collected in CHD patients
because it provides significant biomarkers for disease prognosis. However,
developing accurate machine learning models is challenging due to the lack of
large available datasets. Here, we suggest exploiting the Riemannian geometry
of the spatial covariance structure of the ECG signal to improve
classification. Firstly, we use covariance augmentation to mix samples across
the Riemannian geodesic between corresponding classes. Secondly, we suggest to
project the covariance matrices to their respective class Riemannian mean to
enhance the quality of feature extraction via tangent space projection. We
perform several ablation experiments and demonstrate significant improvement
compared to traditional machine learning models and deep learning on ECG time
series data.
Related papers
- Debiasing Cardiac Imaging with Controlled Latent Diffusion Models [1.802269171647208]
We propose a method to alleviate imbalances inherent in datasets through the generation of synthetic data.
We adopt ControlNet based on a denoising diffusion probabilistic model to condition on text assembled from patient metadata and cardiac geometry.
Our experiments demonstrate the effectiveness of the proposed approach in mitigating dataset imbalances.
arXiv Detail & Related papers (2024-03-28T15:41:43Z) - SDF4CHD: Generative Modeling of Cardiac Anatomies with Congenital Heart
Defects [1.7253131980161722]
Congenital heart disease (CHD) encompasses a spectrum of cardiovascular structural abnormalities.
Deep learning (DL) methods have demonstrated the potential to enable efficient treatment planning.
However, CHDs are often rare, making it challenging to acquire sufficiently large patient cohorts for training such DL models.
We propose a type- and shape-disentangled generative approach suitable to capture the wide spectrum of cardiac anatomies observed in different CHD types.
arXiv Detail & Related papers (2023-11-01T06:50:53Z) - Understanding of Normal and Abnormal Hearts by Phase Space Analysis and
Convolutional Neural Networks [0.0]
His-Purkinje network is used to analyze a normal human heart's power spectra.
CNNs method is applied to 44 records via the MIT-BIH database recorded with MLII.
Binary CNN classification is used to determine healthy or unhealthy hearts.
arXiv Detail & Related papers (2023-05-16T19:52:40Z) - Geometry-Aware Latent Representation Learning for Modeling Disease
Progression of Barrett's Esophagus [0.0]
Barrett's Esophagus (BE) is the only precursor known to Esophageal Adenocarcinoma (EAC)
Unsupervised representation learning via Variational Autoencoders (VAEs) shows promise.
VAEs map input data to a lower-dimensional manifold with only useful features.
$mathcalS$-VAE outperforms vanilla VAE with better reconstruction losses, representation classification accuracies, and higher-quality generated images.
arXiv Detail & Related papers (2023-03-17T14:08:16Z) - Improving Deep Facial Phenotyping for Ultra-rare Disorder Verification
Using Model Ensembles [52.77024349608834]
We analyze the influence of replacing a DCNN with a state-of-the-art face recognition approach, iResNet with ArcFace.
Our proposed ensemble model achieves state-of-the-art performance on both seen and unseen disorders.
arXiv Detail & Related papers (2022-11-12T23:28:54Z) - GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for
Robust Electrocardiogram Prediction [20.8603653664403]
We propose a physiologically-inspired data augmentation method to improve performance and increase the robustness of heart disease detection based on ECG signals.
We obtain augmented samples by perturbing the data distribution towards other classes along the geodesic in Wasserstein space.
Learning from 12-lead ECG signals, our model is able to distinguish five categories of cardiac conditions.
arXiv Detail & Related papers (2022-08-02T03:14:13Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
Disease diagnosis on chest X-ray images is a challenging multi-label classification task.
We propose a Disease Diagnosis Graph Convolutional Network (DD-GCN) that presents a novel view of investigating the inter-dependency among different diseases.
Our method is the first to build a graph over the feature maps with a dynamic adjacency matrix for correlation learning.
arXiv Detail & Related papers (2020-02-26T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.